
 1 Solutions

Solution 1.1
1.1.1 Computer used to run large problems and usually accessed via a network:
(3) servers

1.1.2 1015 or 250 bytes: (7) petabyte

1.1.3 A class of computers composed of hundred to thousand processors and tera-
bytes of memory and having the highest performance and cost: (5) supercomputers

1.1.4 Today’s science fi ction application that probably will be available in near
future: (1) virtual worlds

1.1.5 A kind of memory called random access memory: (12) RAM

1.1.6 Part of a computer called central processor unit: (13) CPU

1.1.7 Thousands of processors forming a large cluster: (8) data centers

1.1.8 Microprocessors containing several processors in the same chip: (10) multi-
core processors

1.1.9 Desktop computer without a screen or keyboard usually accessed via a net-
work: (4) low-end servers

1.1.10 A computer used to running one predetermined application or collection
of software: (9) embedded computers

1.1.11 Special language used to describe hardware components: (11) VHDL

1.1.12 Personal computer delivering good performance to single users at low cost:
(2) desktop computers

1.1.13 Program that translates statements in high-level language to assembly
 language: (15) compiler

Sol01-9780123747501.indd S1Sol01-9780123747501.indd S1 9/5/11 11:24 AM9/5/11 11:24 AM

S2 Chapter 1 Solutions

1.1.14 Program that translates symbolic instructions to binary instructions:
(21) assembler

1.1.15 High-level language for business data processing: (25) Cobol

1.1.16 Binary language that the processor can understand: (19) machine language

1.1.17 Commands that the processors understand: (17) instruction

1.1.18 High-level language for scientifi c computation: (26) Fortran

1.1.19 Symbolic representation of machine instructions: (18) assembly language

1.1.20 Interface between user’s program and hardware providing a variety of
 services and supervision functions: (14) operating system

1.1.21 Software/programs developed by the users: (24) application software

1.1.22 Binary digit (value 0 or 1): (16) bit

1.1.23 Software layer between the application software and the hardware that
includes the operating system and the compilers: (23) system software

1.1.24 High-level language used to write application and system software: (20) C

1.1.25 Portable language composed of words and algebraic expressions that must
be translated into assembly language before run in a computer: (22) high-level
language

1.1.26 1012 or 240 bytes: (6) terabyte

Solution 1.2
1.2.1 8 bits × 3 colors = 24 bits/pixel = 3 bytes/pixel.

a. Confi guration 1: 640 × 480 pixels = 179,200 pixels => 179,200 × 3 = 537,600 bytes/frame
 Confi guration 2: 1280 × 1024 pixels = 1,310,720 pixels => 1,310,720 × 3 = 3,932,160
bytes/frame

b. Confi guration 1: 1024 × 768 pixels = 786,432 pixels => 786,432 × 3 = 2,359,296
bytes/frame
Confi guration 2: 2560 × 1600 pixels = 4,096,000 pixels => 4,096,000 × 3 = 12,288,000
bytes/frame

AQ 1

Sol01-9780123747501.indd S2Sol01-9780123747501.indd S2 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S3

1.2.2 No. frames = integer part of (Capacity of main memory/bytes per frame)

a. Confi guration 1: Main memory: 2 GB = 2000 Mbytes. Frame: 537.600 Mbytes => No. frames = 3
Confi guration 2: Main memory: 4 GB = 4000 Mbytes. Frame: 3,932.160 Mbytes => No. frames = 1

b. Confi guration 1: Main memory: 2 GB = 2000 Mbytes. Frame: 2,359.296 Mbytes => No. frames = 0
Confi guration 2: Main memory: 4 GB = 4000 Mbytes. Frame: 12,288 Mbytes => No. frames = 0

1.2.3 File size: 256 Kbytes = 0.256 Mbytes.

Same solution for a) and b)

Confi guration 1: Network speed: 100 Mbit/sec = 12.5 Mbytes/sec. Time = 0.256/12.5 = 20.48 ms

Confi guration 2: Network speed: 1 Gbit/sec = 125 Mbytes/sec. Time = 0.256/125 = 2.048 ms

1.2.4

a. 2 microseconds from cache ⇒ 20 microseconds from DRAM.

b. 2 microseconds from cache ⇒ 20 microseconds from DRAM.

1.2.5

a. 2 microseconds from cache ⇒ 2 ms from Flash memory.

b. 2 microseconds from cache ⇒ 4.28 ms from Flash memory.

1.2.5

a. 2 microseconds from cache ⇒ 2 s from magnetic disk.

b. 2 microseconds from cache ⇒ 5.7 s from magnetic disk.

Solution 1.3
1.3.1 P2 has the highest performance.

Instr/sec = f/CPI

a. performance of P1 (instructions/sec) = 3 × 109/1.5 = 2 × 109

performance of P2 (instructions/sec) = 2.5 × 109/1.0 = 2.5 × 109

performance of P3 (instructions/sec) = 4 × 109/2.2 = 1.8 × 109

b. performance of P1 (instructions/sec) = 2 × 109/1.2 = 1.66 × 109

performance of P2 (instructions/sec) = 3 × 109/0.8 = 3.75 × 109

performance of P3 (instructions/sec) = 4 × 109/2 = 2 × 109

AQ 2

Sol01-9780123747501.indd S3Sol01-9780123747501.indd S3 9/5/11 11:24 AM9/5/11 11:24 AM

S4 Chapter 1 Solutions

1.3.2 No. cycles = time × clock rate

time = (No. Instr × CPI)/clock rate, then No. instructions = No. cycles/CPI

a. cycles(P1) = 10 × 3 × 109 = 30 × 109 s
cycles(P2) = 10 × 2.5 × 109 = 25 × 109 s
cycles(P3) = 10 × 4 × 109 = 40 × 109 s

No. instructions(P1) = 30 × 109/1.5 = 20 × 109

No. instructions(P2) = 25 × 109/1 = 25 × 109

No. instructions(P3) = 40 × 109/2.2 = 18.18 × 109

b. cycles(P1) = 10 × 2 × 109 = 20 × 109 s
cycles(P2) = 10 × 3 × 109 = 30 × 109 s
cycles(P3) = 10 × 4 × 109 = 40 × 109 s

No. instructions(P1) = 20 × 109/1.2 = 16.66 × 109

No. instructions(P2) = 30 × 109/0.8 = 37.5 × 109

No. instructions(P3) = 40 × 109/2 = 20 × 109

1.3.3 time
new

 = time
old

 × 0.7 = 7 s

a. CPInew = CPIold × 1.2, then CPI(P1) = 1.8, CPI(P2) = 1.2, CPI(P3) = 2.6

f = No. Instr × CPI/time, then

f(P1) = 20 × 109 × 1.8 / 7 = 5.14 GHz
f(P2) = 25 × 109 × 1.2 / 7 = 4.28 GHz
f(P1) = 18.18 × 109 × 2.6 / 7 = 6.75 GHz

b. CPInew = CPIold × 1.2, then CPI(P1) = 1.44, CPI(P2) = 0.96, CPI(P3) = 2.4

f = No. Instr × CPI/time, then

f(P1) = 16.66 × 109 × 1.44/7 = 3.42 GHz
f(P2) = 37.5 × 109 × 0.96/7 = 5.14 GHz
f(P1) = 20 × 109 × 2.4/7 = 6.85 GHz

1.3.4 IPC = 1/CPI = No. instr/(time × clock rate)

a. IPC(P1) = 0.95
IPC(P2) = 1.2
IPC(P3) = 2.5

b. IPC(P1) = 2
IPC(P2) = 1.25
IPC(P3) = 0.89

1.3.5

a. Timenew/Timeold = 7/10 = 0.7. So fnew = fold/0.7 = 2.5 GHz/0.7 = 3.57 GHz.

b. Timenew/Timeold = 5/8 = 0.625. So fnew = fold/0.625 = 4.8 GHz.

AQ 3

Sol01-9780123747501.indd S4Sol01-9780123747501.indd S4 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S5

1.3.6

a. Timenew/Timeold = 9/10 = 0.9. Then Instructionsnew = Instructionsold × 0.9 = 30 × 109 × 0.9 = 27
× 109.

b. Timenew/Timeold = 7/8 = 0.875. Then Instructionsnew = Instructionsold × 0.875 = 26.25 × 109.

 Solution 1.4
1.4.1

Class A: 105 instr.
Class B: 2 × 105 instr.
Class C: 5 × 105 instr.
Class D: 2 × 105 instr.

Time = No. instr × CPI/clock rate

a. Total time P1 = (105 + 2 × 105 × 2 + 5 × 105 × 3 + 2 × 105 × 3)/(2.5 × 109) = 10.4 × 10−4 s
Total time P2 = (105 × 2 + 2 × 105 × 2 + 5 × 105 × 2 + 2 × 105 × 2)/(3 × 109) = 6.66 × 10−4 s

b. Total time P1 = (105 × 2 + 2 × 105 × 1.5 + 5 × 105 × 2 + 2 × 105)/(2.5 × 109) = 6.8 × 10−4 s
Total time P2 = (105 + 2 × 105 × 2 + 5 × 105 + 2 × 105)/(3 × 109) = 4 × 10−4 s

1.4.2 CPI = time × clock rate/No. instr

a. CPI (P1) = 10.4 × 10−4 × 2.5 × 109/106 = 2.6
CPI (P2) = 6.66 × 10−4 × 3 × 109/106 = 2.0

b. CPI (P1) = 6.8 × 10−4 × 2.5 × 109/106 = 1.7
CPI (P2) = 4 × 10−4 × 3 × 109/106 = 1.2

1.4.3

a. clock cycles (P1) = 105 × 1 + 2 × 105 × 2 + 5 × 105 × 3 + 2 × 105 × 3 = 26 × 105

clock cycles (P2) = 105 × 2 + 2 × 105 × 2 + 5 × 105 × 2 + 2 × 105 × 2 = 20 × 105

b. clock cycles (P1) = 17 × 105

clock cycles (P2) = 12 × 105

1.4.4

a. (650 × 1 + 100 × 5 + 600 × 5 + 50 × 2) × 0.5 × 10–9 = 2,125 ns

b. (750 × 1 + 250 × 5 + 500 × 5 + 500 × 2) × 0.5 × 10–9 = 2,750 ns

1.4.5 CPI = time × clock rate/No. instr

a. CPI = 2,125 × 10–9 × 2 × 109/1,400 = 3.03

b. CPI = 2,750 × 10–9 × 2 × 109/2,000 = 2.75

Sol01-9780123747501.indd S5Sol01-9780123747501.indd S5 9/5/11 11:24 AM9/5/11 11:24 AM

S6 Chapter 1 Solutions

1.4.6

a. Time = (650 × 1 + 100 × 5 + 300 × 5 + 50 × 2) × 0.5 × 10–9 = 1,375 ns

Speedup = 2,125 ns/1,375 ns = 1.54

CPI = 1,375 × 10–9 × 2 × 109/1,100 = 2.5

b. Time = (750 × 1 + 250 × 5 + 250 × 5 + 500 × 2) × 0.5 × 10–9 = 2,125 ns

Speedup = 2,750 ns/2,125 ns = 1.29

CPI = 2,125 × 10–9 × 2 × 109/1,750 = 2.43

Solution 1.5
1.5.1

a. P1: 2 × 109 inst/sec, P2: 2 × 109 inst/sec

b. P1: 2 × 109 inst/sec, P2: 3 × 109 inst/sec

1.5.2

a. T(P2)/T(P1) = 4/7; P2 is 1.75 times faster than P1

b. T(P2)/T(P1)= 4.66/5; P2 is 1.07 times faster than P1

1.5.3

a. T(P2)/T(P1) = 4.5/8; P2 is 1.77 times faster than P1

b. T(P2)/T(P1) = 5.33/5.5; P2 is 1.03 times faster than P1

1.5.4

a. 2.91 µs

b. 2.50 µs

1.5.5

a. 0.78 µs

b. 0.90 µs

1.5.6

a. T = 0.68µs => 1.14 times faster

b. T = 0.75µs => 1.20 times faster

Sol01-9780123747501.indd S6Sol01-9780123747501.indd S6 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S7

Solution 1.6
1.6.1 CPI = T

exec
 × f/No. Instr

Compiler A CPI Compiler B CPI

a. 1.8 1.5

b. 1.1 1.25

1.6.2 f
A
/f

B
 = (No. Instr(A) ´ CPI(A))/(No. Instr(B) ´ CPI(B))

a. fA/fB = 1

b. fA/fB = 0.73

1.6.3

Speedup vs. Compiler A Speedup vs. Compiler B

a. Tnew/TA = 0.36 Tnew/TB = 0.36

b. Tnew/TA = 0.6 Tnew/TB = 0.44

1.6.4

P1 Peak P2 Peak

a. 4 × 109 Inst/s 2 × 109 Inst/s

b. 4 × 109 Inst/s 3 × 109 Inst/s

1.6.5 Speedup, P1 versus P2:

a. T1/T2 = 1.9

b. T1/T2 = 1.5

1.6.6

a. 4.37 GHz

b. 6 GHz

Solution 1.7
1.7.1

Geometric mean clock rate ratio = (1.28 × 1.56 × 2.64 × 3.03 × 10.00 × 1.80 ×
0.74)1/7 = 2.15

Geometric mean power ratio = (1.24 × 1.20 × 2.06 × 2.88 × 2.59 × 1.37 × 0.92)1/7 = 1.62

Sol01-9780123747501.indd S7Sol01-9780123747501.indd S7 9/5/11 11:24 AM9/5/11 11:24 AM

S8 Chapter 1 Solutions

1.7.2

Largest clock rate ratio = 2000 MHz/200 MHz = 10 (Pentium Pro to Pentium 4
Willamette)

Largest power ratio = 29.1 W/10.1 W = 2.88 (Pentium to Pentium Pro)

1.7.3

Clock rate: 2.667 × 109/12.5 × 106 = 213.36
Power: 95 W/3.3 W = 28.78

1.7.4 C = P/V2 × clock rate

80286: C = 0.0105 × 10−6

80386: C = 0.01025 × 10−6

80486: C = 0.00784 × 10−6

Pentium: C = 0.00612 × 10−6

Pentium Pro: C = 0.0133 × 10−6

Pentium 4 Willamette: C = 0.0122 ×10−6

Pentium 4 Prescott: C = 0.00183 × 10−6

Core 2: C = 0.0294 ×10−6

1.7.5 3.3/1.75 = 1.78 (Pentium Pro to Pentium 4 Willamette)

1.7.6

Pentium to Pentium Pro: 3.3/5 = 0.66
Pentium Pro to Pentium 4 Willamette: 1.75/3.3 = 0.53
Pentium 4 Willamette to Pentium 4 Prescott: 1.25/1.75 = 0.71
Pentium 4 Prescott to Core 2: 1.1/1.25 = 0.88
Geometric mean = 0.68

Solution 1.8
1.8.1 Power = V2 × clock rate × C. Power

2
 = 0.9 Power

1

a. C2/C1 = 0.9 × 1.752 × 1.5 × 109/(1.22 × 2 × 109) = 1.43

b. C2/C1 = 0.9 × 1.12 × 3 × 109/(0.82 × 4 × 109) = 1.27

1.8.2 Power
2
/Power

1
 = V

2
2 × clock rate

2
/(V

1
2 × clock rate

1
)

a. Power2/Power1 = 0.62 => Reduction of 38%

b. Power2/Power1 = 0.7 => Reduction of 30%

Sol01-9780123747501.indd S8Sol01-9780123747501.indd S8 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S9

1.8.3

a. Power2 = V2
2 × 2 × 109 × 0.8 × C1 = 0.6 × Power1

Power1 = 1.752 × 1.5 × 109 × C1

V2
2 × 2 × 109 × 0.8 × C1 = 0.6 × 1.752 × 1.5 × 109 × C1

V2 =((0.6 × 1.752 × 1.5)/(2 × 0.8))1/2 = 1.31 V

b. Power2 = V2
2 × 4 × 109 × 0.8 × C1 = 0.6 × Power1

Power1 = 1.12 × 3 × 109 × C1

V2
2 × 4 × 109 × 0.8 × C1 = 0.6 × 1.12 × 3 × 109 × C1

V2 = ((0.6 × 1.12 × 3)/(4 × 0.8))1/2 = 0.825 V

1.8.4

a. Powernew = 1 × Cold × V2
old/(21/2)2 × clock rate × 1.15. Thus, Powernew = 0.575 Powerold

b. Powernew = 1 × Cold × V2
old/(21/4)2 × clock rate × 1.2. Thus, Powernew = 0.848 Powerold

1.8.5

a. 1/21/2 = 0.7

b. 1/21/4 = 0.8

1.8.6

a. Voltage = 1.1 × 1/21/2 = 0.77 V.
Clock rate = 2.667 × 1.15 = 3.067 GHz.

b. Voltage = 1.1 × 1/21/4 = 0.92 V.
Clock rate = 2.667 × 1.2 = 3.2 GHz.

Solution 1.9
1.9.1

a. 10/60 × 100 = 16.6%

b. 60/150 × 100 = 40%

1.9.2

P
total_new

 = 0.9 P
total_old

P
static_new

/P
static_old

 = V
new

/V
old

a. 1.08 V

b. 0.81 V

Sol01-9780123747501.indd S9Sol01-9780123747501.indd S9 9/5/11 11:24 AM9/5/11 11:24 AM

S10 Chapter 1 Solutions

1.9.3

a. Powerst/Powerdyn = 10/50 = 0.2

b. Powerst/Powerdyn = 60/90 = 0.66

1.9.4 Power
st
/Power

dyn
 = 0.6 => Power

st
 = 0.6 × Power

dyn

a. Powerst = 0.6 × 35 W = 21 W

b. Powerst = 0.6 × 30 W = 18 W

1.9.5

1.2 V 1.0 V 0.8 V

a. Pst = 12.5 W
Pdyn = 62.5 W

Pst = 10 W
Pdyn = 50 W

Pst = 5.8 W
Pdyn = 29.2 W

b. Pst = 24.8 W
Pdyn = 37.2 W

Pst = 20 W
Pdyn = 30 W

Pst = 12 W
Pdyn = 18 W

1.9.6

a. 29.15

b. 23.32

Solution 1.10
1.10.1

a. Processors Instructions per Processor Total Instructions

1 4096 4096

2 2048 4096

4 1024 4096

8 512 4096

b. Processors Instructions per Processor Total Instructions

1 4096 4096

2 2048 4096

4 1024 4096

8 512 4096

Sol01-9780123747501.indd S10Sol01-9780123747501.indd S10 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S11

1.10.2

a. Processors Execution Time (µs)

1 4.096

2 2.368

4 1.504

8 1.152

b. Processors Execution Time (µs)

1 4.096

2 2.688

4 1.664

8 0.992

1.10.3

a. Processors Execution Time (µs)

1 5.376

2 3.008

4 1.824

8 1.312

b. Processors Execution Time (µs)

1 5.376

2 3.328

4 1.984

8 1.152

1.10.4

a. Cores Execution Time (s) @ 3 GHz

1 4.00

2 2.33

4 1.50

8 1.08

b. Cores Execution Time (s) @ 3 GHz

1 3.33

2 2.00

4 1.16

8 0.71

Sol01-9780123747501.indd S11Sol01-9780123747501.indd S11 9/5/11 11:24 AM9/5/11 11:24 AM

S12 Chapter 1 Solutions

1.10.5

a.
Cores

Power (W) per Core
@ 3 GHz

Power (W) per Core
@ 500 MHz

Power (W)
@ 3 GHz

Power (W)
@ 500 MHz

1 15 0.625 15 0.625

2 15 0.625 30 1.25

4 15 0.625 60 2.5

8 15 0.625 120 5

b.
Cores

Power (W) per Core
@ 3 GHz

Power (W) per Core
@ 500 MHz

Power (W)
@ 3 GHz

Power (W)
@ 500 MHz

1 15 0.625 15 0.625

2 15 0.625 30 1.25

4 15 0.625 60 2.5

8 15 0.625 120 5

1.10.6

a. Processors CPI for 1 Core

1 1.2

2 0.7

4 0.45

8 0.32

b. Processors CPI for 1 Core

1 1

2 0.6

4 0.35

8 0.21

Solution 1.11
1.11.1 Wafer area = p × (d/2)2

a. wafer area = π × 7.52 = 176.7 cm2

b. wafer area = π × 102 = 314.2 cm2

Die area = wafer area/dies per wafer

a. Die area = 176.7/84 = 2.10 cm2

b. Die area = 314.2/100 = 3.14 cm2

AQ 4

Sol01-9780123747501.indd S12Sol01-9780123747501.indd S12 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S13

Yield = 1/(1 + (defect per area × die area)/2)2

a. Yield = 0.96

b. Yield = 0.91

1.11.2 Cost per die = cost per wafer/(dies per wafer × yield)

a. Cost per die = 0.15

b. Cost per die = 0.16

1.11.3

a. Dies per wafer = 1.1 × 84 = 92
Defects per area = 1.15 × 0.02 = 0.023 defects/cm2

Die area = wafer area/Dies per wafer = 176.7/92 = 1.92 cm2

Yield = 0.96

b. Dies per wafer = 1.1 × 100 = 110
Defects per area = 1.15 × 0.031 = 0.036 defects/cm2

Die area = wafer area/Dies per wafer = 314.2/110 = 2.86 cm2

Yield = 0.90

1.11.4 Yield = 1/(1 + (defect per area × die area)/2)2

Then defect per area = (2/die area)(y−1/2 − 1)

Replacing values for T1 and T2 we get:

T1: defects per area = 0.00085 defects/mm2 = 0.085 defects/cm2

T2: defects per area = 0.00060 defects/mm2 = 0.060 defects/cm2

T3: defects per area = 0.00043 defects/mm2 = 0.043 defects/cm2

T4: defects per area = 0.00026 defects/mm2 = 0.026 defects/cm2

1.11.5 no solution provided

Solution 1.12
1.12.1 CPI = clock rate × CPU time/instr count

clock rate = 1/cycle time = 3 GHz

a. CPI(bzip2) = 3 × 109 × 750/(2,389 × 109) = 0.94

b. CPI(go) = 3 × 109 × 700/(1,658 × 109) = 1.26

1.12.2 SPECratio = ref. time/execution time

a. SPECratio(bzip2) = 9,650/750 = 12.86

b. SPECratio(go) = 10,490/700 = 14.98

Sol01-9780123747501.indd S13Sol01-9780123747501.indd S13 9/5/11 11:24 AM9/5/11 11:24 AM

S14 Chapter 1 Solutions

1.12.3

(12.86 × 14.98)1/2 = 13.88

1.12.4 CPU time = No. instr × CPI/clock rate

If CPI and clock rate do not change, the CPU time increase is equal to the increase
in the of number of instructions, that is, 10%.

1.12.5 CPU time(before) = No. instr × CPI/clock rate

CPU time(after) = 1.1 × No. instr × 1.05 × CPI/clock rate

CPU times(after)/CPU time(before) = 1.1 × 1.05 = 1.155 Thus, CPU time is
increased by 15.5%.

1.12.6 SPECratio = reference time/CPU time

SPECratio(after)/SPECratio(before) = CPU time(before)/CPU time(after) =
1/1.1555 = 0.86. Thus, the SPECratio is decreased by 14%.

Solution 1.13
1.13.1 CPI = (CPU time × clock rate)/No. instr

a. CPI = 700 × 4 × 109/(0.85 × 2,389 × 109) = 1.37

b. CPI = 620 × 4 × 109/(0.85 × 1,658 × 109) = 1.75

1.13.2 Clock rate ratio = 4 GHz/3 GHz = 1.33

a. CPI @ 4 GHz = 1.37, CPI @ 3 GHz = 0.94, ratio = 1.45

b. CPI @ 4 GHz = 1.75, CPI @ 3 GHz = 1.26, ratio = 1.38

They are different because although the number of instructions has been reduced
by 15%, the CPU time has been reduced by a lower percentage.

1.13.3

a. 700/750 = 0.933. CPU time reduction: 6.7%

b. 620/700 = 0.886. CPU time reduction: 11.4%

1.13.4 No. instr = CPU time × clock rate/CPI

a. No. instr = 960 × 0.9 × 4 × 109/1.61 = 2,146 × 109

b. No. instr = 690 × 0.9 × 4 × 109/1.79 = 1,387 × 109

1.13.5 Clock rate = no. instr × CPI/CPU time.

Clock rate
new

 = no. instr × CPI/0.9 × CPU time = 1/0.9 clock rate
old

 = 3.33 GHz

Sol01-9780123747501.indd S14Sol01-9780123747501.indd S14 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S15

1.13.6 Clock rate = no. instr × CPI/CPU time.

Clock rate
new

 = no. instr × 0.85 × CPI/0.80 CPU time = 0.85/0.80 clock rate
old

 =
3.18 GHz

Solution 1.14
1.1 4.1 No. instr = 106

a. T(P1) = 5 × 106 × 0.9/(4 × 109) = 1.125 × 10–3 s

T(P2) = 106 × 0.75/(3 × 109) = 0.25 × 10–3 s

clock rate (P1) > clock rate (P2), performance (P1) < performance (P2)

b. T(P1) = 3 × 106 × 1.1/(3 × 109) = 1.1 × 10–3 s

T(P2) = 0.5 × 106 × 1/(2.5 × 109) = 0.2 × 10–3 s

clock rate (P1) > clock rate (P2), performance (P1) < performance (P2)

1.14.2

a. 106 instructions, T(P1) = No. Intr × CPI/clock rate

T(P1) = 2.25 × 10–4 s

T(P2) = N × 0.75/(3 × 109) then N = 9 × 105

b. 106 instructions, T(P1) = No. Intr × CPI/clock rate

T(P1) = 3.66 × 10–4 s

T(P2) = N × 1/(3 × 109) then N = 9.15 × 105

1.14.3 MIPS = Clock rate × 10−6/CPI

a. MIPS(P1) = 4 × 109 × 10–6/0.9 = 4.44 × 103

MIPS(P2) = 3 × 109 × 10–6/0.75 = 4.0 × 103

MIPS(P1) > MIPS(P2), performance(P1) < performance(P2) (from 1.14.1)

b. MIPS(P1) = 3 × 109 × 10–6/1.1 = 2.72 × 103

MIPS(P2) = 2.5 × 109 × 10–6/1 = 2.5 × 103

MIPS(P1) > MIPS(P2), performance(P1) < performance(P2) (from 1.14.1)

1.14.4 MFLOPS = No. FP operations × 10−6/T

a. T(P1) = (5 × 105 × 0.75 + 4 × 105 × 1 + 10 × 105 × 1.5)/(4 × 109) = 5.86 × 10–4 s

MFLOPS(P1) = 4 × 105 × 10–6/(5.86 × 10–4) = 6.82 × 102

T(P2) = (2 × 106 × 1.25 + 2 × 106 × 0.8 + 1 × 106 × 1.25)/(3 × 109) = 1.78 × 10–3 s

MFLOPS(P1) = 3 × 105 × 10–6/(1.78 × 10–3) = 1.68 × 102

b. T(P1) = (1.5 × 106 × 1.5 + 1.5 × 106 × 1 + 2 × 106 × 2)/(4 × 109) = 1.93 × 10–3 s

MFLOPS(P1) = 1.5 × 106 × 10–6/(1.93 × 10–3) = 0.77 × 102

T(P2) = (0.8 × 106 × 1.25 + 0.6 × 106 × 1 + 0.6 × 106 × 2.5)/(3 × 109) = 1.03 × 10–3 s

MFLOPS(P2) = 0.6 × 106 × 10–6/(1.03 × 10–3) = 5.82 × 102

Sol01-9780123747501.indd S15Sol01-9780123747501.indd S15 9/5/11 11:24 AM9/5/11 11:24 AM

S16 Chapter 1 Solutions

1.14.5

a. T(P1) = (5 × 105 × 0.75 + 4 × 105 × 1 + 10 × 105 × 1.5)/(4 × 109) = 5.86 × 10–4 s

CPI(P1) = 5.86 × 10–4 × 4 × 109/106 = 2.27

MIPS(P1) = 4 × 109/(2.27 ×106) = 1.76 × 103

T(P2) = (2 × 106 × 1.25 + 2 × 106 × 0.8 + 1 × 106 × 1.25)/(3 × 109) = 1.78 × 10–3 s

CPI(P2) = 1.78 × 10–3 × 3 × 109/(5 × 106) = 1.068 s

MIPS(P2) = 3 × 109/(1.068 × 106) = 2.78 × 103

b. T(P1) = (1.5 × 106 × 1.5 + 1.5 × 106 × 1 + 2 × 106 × 2)/(4 × 109) = 1.93 × 10–3 s

CPI(P1) = 1.93 × 10–3 × 4 × 109/(5 × 106) = 1.54

MIPS(P1) = 4 × 109/(1.54 × 106) = 2.59 × 103

T(P2) = (0.8 × 106 × 1.25 + 0.6 × 106 × 1 + 0.6 × 106 × 2.5)/(3 × 109) = 1.03 × 10–3 s

CPI(P2) = 1.03 × 10–3 × 3 × 109/(2 ×106) = 1.54

MIPS(P1) = 3 × 109/(1.54 × 106) = 1.94 × 103

1.14.6

a. T(P1) = 5.86 × 10–4 s (see problem 1.14.5)

performance(P1) = 1/T(P1) = 1.7 × 103

T(P2) = 1.78 × 10–3 s (see problem 1.14.5)

performance(P2) = 1/T(P2) = 5.6 × 102

perf(P1) > perf(P2), MIPS(P1) > MIPS(P2), MFLOPS(P1) < MFLOPS(P2)

b. T(P1) = 1.93 × 10–3 s (see problem 1.14.5)

performance(P1) = 1/T(P1) = 5.1 × 102

T(P2) = 1.03 × 10–3 s (see problem 1.14.5)

performance(P2) = 1/T(P2) = 9.7 × 102

perf(P1) < perf(P2), MIPS(P1) < MIPS(P2), MFLOPS(P1) > MFLOPS(P2)

Solution 1.15
1.15.1

a. Tfp = 70 × 0.8 = 56 s. Tnew= 56 + 85 + 55 + 40 = 236 s. Reduction: 5.6%

b. Tfp = 40 × 0.8 = 32 s. Tnew= 32 + 90 + 60 + 20 = 202 s. Reduction: 3.8%

1.15.2

a. Tnew = 250 × 0.8 = 200 s, Tfp + Tl/s + Tbranch = 165 s, Tint = 35 s. Reduction time INT: 58.8%

b. Tnew = 210 × 0.8 = 168 s, Tfp + Tl/s + Tbranch = 120 s, Tint = 48 s. Reduction time INT: 46.6%

Sol01-9780123747501.indd S16Sol01-9780123747501.indd S16 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S17

1.15.3

a. Tnew = 250 × 0.8 = 200 s, Tfp + Tint + Tl/s = 210 s. NO

b. Tnew = 210 × 0.8 = 168 s, Tfp + Tint + Tl/s = 190 s. NO

1.15.4

Clock cyles = CPI
fp

 × No. FP instr. + CPI
int

 × No. INT instr. + CPI
l/s

 × No. L/S instr. +
CPI

branch
 × No. branch instr.

T
cpu

 = clock cycles/clock rate = clock cycles/2 × 109

a. 2 processors: clock cycles = 4,096 × 106; Tcpu = 2.048 s

b. 16 processors: clock cycles = 512 × 106; Tcpu = 0.256 s

To half the number of clock cycles by improving the CPI of FP instructions:

CPI
improved

fp

 × No. FP instr. + CPI
int

 × No. INT instr. + CPI
l/s

 × No. L/S instr. +
CPI

branch
 × No. branch instr. = clock cycles/2

CPI
improved

fp

 = (clock cycles/2 − (CPI
int

 × No. INT instr. + CPI
l/s

 × No. L/S instr. +
CPI

branch
 × No. branch instr.))/No. FP instr.

a. 2 processors: CPIimproved fp = (2,048 – 3,816)/280 < 0 ==> not possible

b. 16 processors: CPIimproved fp = (256 – 462)/50 < 0 ==> not possible

1.15.5 Using the clock cycle data from 1.15.4:

To half the number of clock cycles improving the CPI of L/S instructions:

CPI
fp

 × No. FP instr. + CPI
int

 × No. INT instr. + CPI
improved l/s

 × No. L/S instr. +
CPI

branch
 × No. branch instr. = clock cycles/2

CPI
improved l/s

 = (clock cycles/2 − (CPI
fp

 × No. FP instr. + CPI
int

 × No. INT instr. +
CPI

branch
 × No. branch instr.))/No. L/S instr.

a. 2 processors: CPIimproved l/s = (2,048 – 1,536)/640 = 0.8

b. 16 processors: CPIimproved l/s = (256 – 198)/80 = 0.725

1.15.6

Clock cyles = CPI
fp

 × No. FP instr. + CPI
int

 × No. INT instr. + CPI
l/s

 × No. L/S instr. +
CPI

branch
 × No. branch instr.

T
cpu

 = clock cycles/clock rate = clock cycles/2 × 109

Sol01-9780123747501.indd S17Sol01-9780123747501.indd S17 9/5/11 11:24 AM9/5/11 11:24 AM

S18 Chapter 1 Solutions

CPI
int

 = 0.6 × 1 = 0.6; CPI
fp
 = 0.6 × 1 = 0.6; CPI

l/s
 = 0.7 × 4 = 2.8; CPI

branch
 = 0.7 × 2 = 1.4

a. 2 processors: Tcpu (before improv.) = 2.048 s; Tcpu (after improv.) = 1.370 s

b. 16 processors: Tcpu (before improv.) = 0.256 s; Tcpu (after improv.) = 0.171 s

Solution 1.16
1.16.1 Without reduction in any routine:

a. total time 4 proc = 102 ms

b. total time 32 proc = 18 ms

Reducing time in routines A, C, and E:

a. 4 proc: T(A) = 10.2 ms, T(C) = 5.1 ms, T(E) = 2.5 ms, total time = 98.8 ms ==> reduction = 3.1%

b. 32 proc: T(A) = 1.7 ns, T(C) = 0.85 ns, T(E) = 1.7 ms, total time = 17.2 ms ==> reduction = 4.4%

1.16.2

a. 4 proc: T(B) = 40.5 ms, total time = 97.5 ms ==> reduction = 4.4%

b. 32 proc: T(B) = 6.3 ms, total time = 17.3 ms ==> reduction = 3.8%

1.16.3

a. 4 proc: T(D) = 32.4 ms, total time = 98.4 ms ==> reduction = 3.5%

b. 32 proc: T(D) = 5.4 ms, total time = 17.4 ms ==> reduction = 3.3%

1.16.4

No. Processors Computing Time
Computing Time

Ratio Routing Time Ratio

2 201 ms

4 131 ms 0.65 1.18

8 85 ms 0.65 1.31

16 56 ms 0.66 1.29

32 35 ms 0.62 1.05

64 18.5 ms 0.53 1.13

AQ 5

Sol01-9780123747501.indd S18Sol01-9780123747501.indd S18 9/5/11 11:24 AM9/5/11 11:24 AM

 Chapter 1 Solutions S19

1.16.5 Geometric mean of computing time ratios = 0.62. Multiplying this
by the computing time for a 64-processor system gives a computing time for a
128- processor system of 11.474 ms.

Geometric mean of routing time ratios = 1.19. Multiplying this by the routing time
for a 64-processor system gives a routing time for a 128-processor system of 30.9 ms.

1.16.6 Computing time = 201/0.62 = 324 ms. Routing time = 0, since no communica-
tion is required.

Sol01-9780123747501.indd S19Sol01-9780123747501.indd S19 9/5/11 11:24 AM9/5/11 11:24 AM

Author Query

AQ 1: Page S2: As meant t/o?
AQ 2: Page S3: As meant t/o?
AQ 3: Page S4: Close up t/o?
AQ 4: Page S12: Inserted heading OK?
AQ 5: Page S18: Blank cells as meant?

Sol01-9780123747501.indd S20Sol01-9780123747501.indd S20 9/5/11 11:24 AM9/5/11 11:24 AM

 2 Solutions

Solution 2.1
2.1.1

a. sub f, g, h

b. addi f, h, −5 (note, no subi)
add f, f, g

2.1.2

a. 1

b. 2

2.1.3

a. −1

b. 0

2.1.4

a. f = f + 4

b. f = g + h + i

2.1.5

a. 5

b. 9

Solution 2.2
2.2.1

a. sub f, g, f

b. addi f, h, −2 (note no subi)
add f, f, i

Sol02-9780123747501.indd S1Sol02-9780123747501.indd S1 9/3/11 1:55 AM9/3/11 1:55 AM

S2 Chapter 2 Solutions

2.2.2

a. 1

b. 2

2.2.3

a. 1

b. 2

2.2.4

a. f += 4;

b. f = i − (g + h);

2.2.5

a. 5

b. −1

Solution 2.3
2.3.1

a. sub f, $0, f
sub f, f, g

b. sub f, $0, f
addi f, f, −5 (note, no subi)
add f, f, g

2.3.2

a. 2

b. 3

2.3.3

a. −3

b. −3

Sol02-9780123747501.indd S2Sol02-9780123747501.indd S2 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S3

2.3.4

a. f += −4

b. f += (g + h);

2.3.5

a. −3

b. 6

Solution 2.4
2.4.1

a. lw $s0, 16($s6)
sub $s0, $0, $s0
sub $s0, $s0, $s1

b. sub $t0, $s3, $s4
add $t0, $s6, $t0
lw $t1, 16($t0)
sw $t1, 32($s7)

2.4.2

a. 3

b. 4

2.4.3

a. 3

b. 6

2.4.4

a. f = 2j + i + g;

b. B[g] = A[f] + A[1+f];

Sol02-9780123747501.indd S3Sol02-9780123747501.indd S3 9/3/11 1:55 AM9/3/11 1:55 AM

S4 Chapter 2 Solutions

2.4.5

a. slli $s2, $s4, 1
add $s0, $s2, $s3
add $s0, $s0, $s1

b. add $t0, $s6, $s0

add $t1, $s7, $s1

lw $s0, 0($t0)

lw $t0, 4($t0)

add $t0, $t0, $s0

sw $t0, 0($t1)

2.4.6

a. 5 as written, 5 minimally

b. 7 as written, 6 minimally

Solution 2.5
2.5.1

a. Address Data
 20 4
 24 5
 28 3
 32 2
 34 1

temp = Array[0];
temp2 = Array[1];
Array[0] = Array[4];
Array[1] = Array[3];
Array[3] = temp;
Array[4] = temp2;

b. Address Data
 24 2
 38 4
 32 3
 36 6
 40 1

temp = Array[0];
temp2 = Array[1];
Array[0] = Array[4];
Array[1] = temp;
Array[4] = Array[3];
Array[3] = temp2;

2.5.2

a. Address Data
 20 4
 24 5
 28 3
 32 2
 34 1

temp = Array[0];
temp2 = Array[1];
Array[0] = Array[4];
Array[1] = Array[3];
Array[3] = temp;
Array[4] = temp2;

lw $t0, 0($s6)
lw $t1, 4($s6)
lw $t2, 16($s6)
sw $t2, 0($s6)
lw $t2, 12($s6)
sw $t2, 4($s6)
sw $t0, 12($s6)
sw $t1, 16($s6)

Sol02-9780123747501.indd S4Sol02-9780123747501.indd S4 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S5

b. Address Data
 24 2
 38 4
 32 3
 36 6
 40 1

temp = Array[0];
temp2 = Array[1];
Array[0] = Array[4];
Array[1] = temp;
Array[4] = Array[3];
Array[3] = temp2;

lw $t0, 0($s6)
lw $t1, 4($s6)
lw $t2, 16($s6)
sw $t2, 0($s6)
sw $t0, 4($s6)
lw $t0, 12($s6)
sw $t0, 16($s6)

sw $t1, 12($s6)

2.5.3

a. Address Data
 20 4
 24 5
 28 3
 32 2
 34 1

temp = Array[1];
Array[1] = Array[5];
Array[5] = temp;
temp = Array[2];
Array[2] = Array[4];
temp2 = Array[3];
Array[3] = temp;
Array[4] = temp2;

lw $t0, 0($s6)
lw $t1, 4($s6)
lw $t2, 16($s6)
sw $t2, 0($s6)
lw $t2, 12($s6)
sw $t2, 4($s6)
sw $t0, 12($s6)

sw $t1, 16($s6)

8 MIPS instructions,
+1 MIPS inst. for every
non-zero offset lw/sw
pair (11 MIPS inst.)

b. Address Data
 24 2
 38 4
 32 3
 36 6
 40 1

temp = Array[3];
Array[3] = Array[2];
Array[2] = Array[1];
Array[1] = Array[0];
Array[0] = temp;

lw $t0, 0($s6)
lw $t1, 4($s6)
lw $t2, 16($s6)
sw $t2, 0($s6)
sw $t0, 4($s6)
lw $t0, 12($s6)
sw $t0, 16($s6)

sw $t1, 12($s6)

8 MIPS instructions, +1
MIPS inst. for every non-
zero offset lw/sw pair
(11 MIPS inst.)

2.5.4

a. 2882400018

b. 270544960

2.5.5

Little-Endian Big-Endian

a. Address Data
 12 ab
 8 cd
 4 ef
 0 12

 Address Data
 12 12
 8 ef
 4 cf
 0 ab

b. Address Data
 12 10
 8 20
 4 30
 0 40

 Address Data
 12 40
 8 30
 4 20
 0 10

Sol02-9780123747501.indd S5Sol02-9780123747501.indd S5 9/3/11 1:55 AM9/3/11 1:55 AM

S6 Chapter 2 Solutions

Solution 2.6
2.6.1

a. lw $t0, 4($s7) # $t0 <-- B[1]
sub $t0, $t0, $s1 # $t0 <-- B[1] − g
add $s0, $t0, $s2 # f <-- B[1] −g + h

b. sll $t0, $s1, 2 # $t0 <-- 4*g
add $t0, $t0, $s7 # $t0 <-- Addr(B[g])
lw $t0, 0($t0) # $t0 <-- B[g]
addi $t0, $t0, 1 # $t0 <-- B[g]+1
sll $t0, $t0, 2 # $t0 <-- 4*(B[g]+1) = Addr(A[B[g]+1])
lw $s0, 0($t0) # f <-- A[B[g]+1]

2.6.2

a. 3

b. 6

2.6.3

a. 5

b. 4

2.6.4

a. f = f – i;

b. f = 2 * (&A);

2.6.5

a. $s0 = −30

b. $s0 = 512

2.6.6

a.

Type opcode rs rt rd immed

sub $s0, $s0, $s1 R-type 0 16 17 16

sub $s0, $s0, $s3 R-type 0 16 19 16

add $s0, $s0, $s1 R-type 0 16 17 16

Sol02-9780123747501.indd S6Sol02-9780123747501.indd S6 9/3/11 3:57 PM9/3/11 3:57 PM

 Chapter 2 Solutions S7

b.

Type opcode rs rt rd immed

addi $t0, $s6, 4 I-type 8 22 8 4

add $t1, $s6, $0 R-type 0 22 0 9

sw $t1, 0($t0) I-type 43 8 9 0

lw $t0, 0($t0) I-type 35 8 8 0

add $s0, $t1, $t0 R-type 0 9 8 16

Solution 2.7

2.7.1

a. 613566756

b. 1606303744

2.7.2

a. 613566756

b. 1606303744

2.7.3

a. 24924924

b. 5FBE4000

2.7.4

a. 11111111111111111111111111111111

b. 10000000000

2.7.5

a. FFFFFFFF

b. 400

2.7.6

a. 1

b. FFFFFC00

Sol02-9780123747501.indd S7Sol02-9780123747501.indd S7 9/3/11 3:57 PM9/3/11 3:57 PM

S8 Chapter 2 Solutions

Solution 2.8
2.8.1

a. 50000000, overfl ow

b. 0, no overfl ow

2.8.2

a. B0000000, no overfl ow

b. 2, no overfl ow

2.8.3

a. D0000000, overfl ow

b. 000000001, no overfl ow

2.8.4

a. overfl ow

b. overfl ow

2.8.5

a. overfl ow

b. overfl ow

2.8.6

a. overfl ow

b. overfl ow

Solution 2.9
2.9.1

a. no overfl ow

b. overfl ow

Sol02-9780123747501.indd S8Sol02-9780123747501.indd S8 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S9

2.9.2

a. no overfl ow

b. no overfl ow

2.9.3

a. no overfl ow

b. no overfl ow

2.9.4

a. overfl ow

b. overfl ow

2.9.5

a. 94924924

b. CFBE4000

2.9.6

a. 2492614948

b. −809615360

Solution 2.10
2.10.1

a. add $s0, $s0, $s0

b. sub $t1, $t2, $t3

2.10.2

a. r-type

b. r-type

2.10.3

a. 2108020

b. 14B4822

Sol02-9780123747501.indd S9Sol02-9780123747501.indd S9 9/3/11 1:55 AM9/3/11 1:55 AM

S10 Chapter 2 Solutions

2.10.4

a. 0x21080001

b. 0xAD490020

2.10.5

a. i-type

b. i-type

2.10.6

a. op=0x8, rs=0x8, rs=0x8, imm=0x0

b. op=0x2B, rs=0xA, rt=0x9, imm=0x20

Solution 2.11
2.11.1

a. 0000 0001 0000 1000 0100 0000 0010 0000two

b. 0000 0010 0101 0011 1000 1000 0010 0010two

2.11.2

a. 17317920

b. 39028770

2.11.3

a. add $t0, $t0, $t0

b. sub $s1, $s2, $s3

2.11.4

a. r-type

b. i-type

Sol02-9780123747501.indd S10Sol02-9780123747501.indd S10 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S11

2.11.5

a. sub $v1, $v1, $v0

b. lw $v0, 4($at)

2.11.6

a. 0x00621822

b. 0x8C220004

Solution 2.12
2.12.1

Type opcode rs rt rd shamt funct

a. r-type 6 7 7 7 5 6 total bits = 38

b. r-type 8 5 5 5 5 6 total bits = 34

2.12.2

Type opcode rs rt immed

a. i-type 6 7 7 16 total bits = 36

b. i-type 8 5 5 16 total bits = 34

2.12.3

a. more registers → more bits per instruction → could increase code size
more registers → less register spills → less instructions

b. more instructions → more appropriate instruction → decrease code size
more instructions → larger opcodes → larger code size

2.12.4

a. 17367058

b. 2903048210

2.12.5

a. sub $t0, $t1, $0

b. sw $t1, 12($t0)

Sol02-9780123747501.indd S11Sol02-9780123747501.indd S11 9/3/11 1:55 AM9/3/11 1:55 AM

S12 Chapter 2 Solutions

2.12.6

a. r-type, op=0x0, rt=0x9

b. i-type, op=0x2B, rt=0x8

Solution 2.13
2.13.1

a. 0xBABEFEF8

b. 0x11D111D1

2.13.2

a. 0xAAAAAAA0

b. 0x00DD00D0

2.13.3

a. 0x00005545

b. 0x0000BA01

2.13.4

a. 0x00014B4A

b. 0x00000001

2.13.5

a. 0x4b4a0000

b. 0x00000000

2.13.6

a. 0x4b4bfffe

b. 0x0000003C

Sol02-9780123747501.indd S12Sol02-9780123747501.indd S12 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S13

Solution 2.14
2.14.1

a. lui $t1, 0x003f
ori $t1, $t0, 0xffe0
and $t1, $t0, $t1
srl $t1, $t1, 5

b. lui $t1, 0x003f
ori $t1, $t0, 0xffe0
and $t1, $t0, $t1
sll $t1, $t1, 9

2.14.2

a. add $t1, $t0, $0
sll $t1, $t1, 28

b. andi $t0, $t0, 0x000f
sll $t0, $t0, 14
ori $t1, $t1, 0x3fff
sll $t1, $t1, 18
ori $t1, $t1, 0x3fff
or $t1, $t1, $t0

2.14.3

a. srl $t1, $t0, 28
sll $t1, $t1, 29

b. srl $t0, $t0, 28
andi $t0, $t0, 0x0007
sll $t0, $t0, 14
ori $t1, $t1, 0x7fff
sll $t1, $t1, 17
ori $t1, $t1, 0x3fff
or $t1, $t1, $t0

2.14.4

a. srl $t0, $t0, 11
sll $t0, $t0, 26
ori $t2, $0, 0x03ff
sll $t2, $t2, 16
ori $t2, $t2, 0xffff
and $t1, $t1, $t2
or $t1, $t1, $t0

b. srl $t0, $t0, 11
sll $t0, $t0, 26
srl $t0, $t0, 12
ori $t2, $0, 0xfff0
sll $t2, $t2, 16
ori $t2, $t2, 0x3fff
and $t1, $t1, $t2
or $t1, $t1, $t0

Sol02-9780123747501.indd S13Sol02-9780123747501.indd S13 9/3/11 1:55 AM9/3/11 1:55 AM

S14 Chapter 2 Solutions

2.14.5

a. sll $t0, $t0, 27
ori $t2, $0, 0x07ff
sll $t2, $t2, 16
ori $t2, $t2, 0xffff
and $t1, $t1, $t2
or $t1, $t1, $t0

b. sll $t0, $t0, 27
srl $t0, $t0, 13
ori $t2, $0, 0xfff8
sll $t2, $t2, 16
ori $t2, $t2, 0x3fff
and $t1, $t1, $t2
or $t1, $t1, $t0

2.14.6

a. srl $t0, $t0, 29
sll $t0, $t0, 30
ori $t2, $0, 0x3fff
sll $t2, $t2, 16
ori $t2, $t2, 0xffff
and $t1, $t1, $t2
or $t1, $t1, $t0

b. srl $t0, $t0, 29
sll $t0, $t0, 30
srl $t0, $t0, 16
ori $t2, $0, 0xffff
sll $t2, $t2, 16
ori $t2, $t2, 0x3fff
and $t1, $t1, $t2
or $t1, $t1, $t0

Solution 2.15
2.15.1

a. 0xff005a5a

b. 0x00ffffe7

2.15.2

a. nor $t1, $t2, $t2

b. nor $t1, $t3, $t3
or $t1, $t2, $t1

2.15.3

a. nor $t1, $t2, $t2 000000 01010 01010 01001 00000 100111

b. nor $t1, $t3, $t3
or $t1, $t2, $t1

000000 01011 01011 01001 00000 100111
000000 01010 01001 01001 00000 100101

Sol02-9780123747501.indd S14Sol02-9780123747501.indd S14 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S15

2.15.4

a. 0xFFFFFFFF

b. 0x00012340

2.15.5 Assuming $t1 = A, $t2 = B, $s1 = base of Array C

a. nor $t3, $t1, $t1
 or $t1, $t2, $t3

b. lw $t3, 0($s1)
 sll $t1, $t3, 4

2.15.6

a. nor $t3, $t1, $t1
 or $t1, $t2, $t3

000000 01001 01001 01011 00000 100111
000000 01010 01011 01001 00000 100101

b. lw $t3, 0($s1)
 sll $t1, $t3, 4

100011 10001 01011 0000000000000000
000000 00000 01011 01001 00100 000000

Solution 2.16
2.16.1

a. $t2 = 1

b. $t2 = 1

2.16.2

a. none

b. none

2.16.3

a. Jump – No, Beq - No

b. Jump – No, Beq - No

2.16.4

a. $t2 = 2

b. $t2 = 1

2.16.5

a. $t2 = 0

b. $t2 = 0

Sol02-9780123747501.indd S15Sol02-9780123747501.indd S15 9/3/11 1:55 AM9/3/11 1:55 AM

S16 Chapter 2 Solutions

2.16.6

a. jump – Yes, beq - no

b. jump – no, beq - no

Solution 2.17
2.17.1 The answer is really the same for all. All of these instructions are either
supported by an existing instruction or sequence of existing instructions. Looking
for an answer along the lines of, “these instructions are not common, and we are
only making the common case fast.”

2.17.2

a. i-type

b. i-type

2.17.3

a. addi $t2, $t3, −5

b. addi $t2, $t2, −1
beq $t2, $0, loop

2.17.4

a. 20

b. 20

2.17.5

a. i = 10;
do {
 B += 2;
 i = i – 1;
} while (i > 0)

b. Same as part a.

2.17.6

a. 3 ´ N

b. 5 ´ N

Sol02-9780123747501.indd S16Sol02-9780123747501.indd S16 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S17

a.

b.

2.18.2

a. addi $t0, $0, 0
 beq $0, $0, TEST
LOOP: add $s0, $s0, $s1
 addi $t0, $t0, 1
TEST: slt $t2, $t0, $s0
 bne $t2, $0, LOOP

A += B

i < a i += 1

D[4 x j] = i + j;

j += 1

i += 1

J < b

i < a

Solution 2.18
2.18.1

Sol02-9780123747501.indd S17Sol02-9780123747501.indd S17 9/3/11 1:55 AM9/3/11 1:55 AM

S18 Chapter 2 Solutions

b. addi $t0, $0, 0
 beq $0, $0, TEST1
LOOP1:addi $t1, $0, 0
 beq $0, $0, TEST2
LOOP2:add $t3, $t0, $t1
 sll $t2, $t1, 4
 add $t2, $t2, $s2
 sw $t3, ($t2)
 addi $t1, $t1, 1
TEST2:slt $t2, $t1, $s1
 bne $t2, $0, LOOP2
 addi $t0, $t0, 1
TEST1:slt $t2, $t0, $s0
 bne $t2, $0, LOOP1

2.18.3

a. 6 instructions to implement and infi nite instructions executed

b. 14 instructions to implement and 158 instructions executed

2.18.4

a. 351

b. 601

2.18.5

a. for(i=50; i>0; i--){
 result += MemArray[s0];
 result += MemArray[s0+1];
 s0 += 2;
}

b. for (i=0; i<100; i++) {
 result += MemArray[s0];
 s0 = s0 + 4;
}

2.18.6

a. addi $t1, $s0, 400
LOOP: lw $s1, 0($s0)
 add $s2, $s2, $s1
 lw $s1, 4($s0)
 add $s2, $s2, $s1
 addi $s0, $s0, 8
 bne $s0, $t1, LOOP

Sol02-9780123747501.indd S18Sol02-9780123747501.indd S18 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S19

b. addi $t1, $s0, 400
LOOP: lw $s1, 0($t1)
 add $s2, $s2, $s1
 addi $t1, $t1, −4
 bne $t1, $s0, LOOP

Solution 2.19
2.19.1

a. fi b: addi $sp, $sp, −12 # make room on stack
 sw $ra, 8($sp) # push $ra
 sw $s0, 4($sp) # push $s0
 sw $a0, 0($sp) # push $a0 (N)
 bgt $a0, $0, test2 # if n>0, test if n=1
 add $v0, $0, $0 # else fi b(0) = 0
 j rtn #
test2: addi $t0, $0, 1 #
 bne $t0, $a0, gen # if n>1, gen
 add $v0, $0, $t0 # else fi b(1) = 1
 j rtn
gen: subi $a0, $a0,1 # n−1
 jal fi b # call fi b(n−1)
 add $s0, $v0, $0 # copy fi b(n−1)
 sub $a0, $a0,1 # n−2
 jal fi b # call fi b(n−2)
 add $v0, $v0, $s0 # fi b(n−1)+fi b(n−2)
rtn: lw $a0, 0($sp) # pop $a0
 lw $s0, 4($sp) # pop $s0
 lw $ra, 8($sp) # pop $ra
 addi $sp, $sp, 12 # restore sp
 jr $ra

fi b(0) = 12 instructions, fi b(1) = 14 instructions,
fi b(N) = 26 + 18N instructions for N >=2

b. positive:
 addi $sp, $sp, −4
 sw $ra, 0($sp)
 jal addit
 addi $t1, $0, 1
 slt $t2, $0, $v0
 bne $t2, $0, exit
 addi $t1, $0, $0
exit:
 add $v0, $t1, $0
 lw $ra, 0($sp)
 addi $sp, $sp, 4
 jr $ra
addit:
 add $v0, $a0, $a1
 jr $ra
13 instructions worst-case

Sol02-9780123747501.indd S19Sol02-9780123747501.indd S19 9/3/11 1:55 AM9/3/11 1:55 AM

S20 Chapter 2 Solutions

2.19.2

a. Due to the recursive nature of the code, not possible for the
compiler to in-line the function call.

b. positive:
 add $t0, $a0, $a1
 addi $v0, $0, 1
 slt $t2, $0, $t0
 bne $t2, $0, exit
 addi $v0, $0, $0
exit:
 jr $ra

6 instructions worst-case

2.19.3

a. after calling function fi b:
old $sp -> 0x7ffffffc ???
 −4 contents of register $ra for fi b(N)
 −8 contents of register $s0 for fi b(N)
$sp-> −12 contents of register $a0 for fi b(N)

there will be N−1 copies of $ra, $s0, and $a0

b. after calling function positive:
old $sp -> 0x7ffffffc ???
$sp-> −4 contents of register $ra

after calling function addit:
old $sp -> 0x7ffffffc ???
 −4 contents of register $ra
$sp-> −8 contents of register $ra #return to
positive

2.19.4

a. f: addi $sp,$sp,−12
 sw $ra,8($sp)
 sw $s1,4($sp)
 sw $s0,0($sp)
 move $s1,$a2
 move $s0,$a3
 jal func
 move $a0,$v0
 add $a1,$s0,$s1
 jal func
 lw $ra,8($sp)
 lw $s1,4($sp)
 lw $s0,0($sp)
 addi $sp,$sp,12
 jr $ra

Sol02-9780123747501.indd S20Sol02-9780123747501.indd S20 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S21

b. f: addi $sp,$sp,−4
 sw $ra,0($sp)
 add $t0,$a1,$a0
 add $a1,$a3,$a2
 slt $t1,$a1,$t0
 beqz $t1,L
 move $a0,$t0
 jal func
 lw $ra,0($sp)
 addi $sp,$sp,4
 jr ra
L: move $a0,$a1
 move $a1,$t0
 jal func
 lw $ra,0($sp)
 addi $sp,$sp,4
 jr $ra

2.19.5

a. We can use the tail-call optimization for the second call to func, but then we must restore $ra,
$s0, $s1, and $sp before that call. We save only one instruction (jr $ra).

b. We can use the tail-call optimization for either call to func (when the condition for the if is
true or false). This eliminates the need to save $ra and move the stack pointer, so we execute
5 fewer instructions (regardless of whether the if condition is true or not). The code of the
function is 8 instructions shorter because we can eliminate both instances of the code that
restores $ra and returns.

2.19.6 Register $ra is equal to the return address in the caller function, registers
$sp and $s3 have the same values they had when function f was called, and register
$t5 can have an arbitrary value. For register $t5, note that although our function
f does not modify it, function func is allowed to modify it so we cannot assume
anything about the value of $t5 after function func has been called.

Solution 2.20
2.20.1

a. FACT: addi $sp, $sp, −8 # make room in stack for 2 more items
 sw $ra, 4($sp) # save the return address
 sw $a0, 0($sp) # save the argument n
 slti $t0, $a0, 1 # $t0 = $a0 x 2
 beq, $t0, $0, L1 # if $t0 = 0, goto L1
 add $v0, $0, 1 # return 1
 add $sp, $sp, 8 # pop two items from the stack
 jr $ra # return to the instruction after jal
L1: addi $a0, $a0, −1 # subtract 1 from argument
 jal FACT # call fact(n−1)
 lw $a0, 0($sp) # just returned from jal: restore n
 lw $ra, 4($sp) # restore the return address
 add $sp, $sp, 8 # pop two items from the stack
 mul $v0, $a0, $v0 # return n*fact(n−1)
 jr $ra # return to the caller

Sol02-9780123747501.indd S21Sol02-9780123747501.indd S21 9/3/11 1:55 AM9/3/11 1:55 AM

S22 Chapter 2 Solutions

b. FACT: addi $sp, $sp, −8 # make room in stack for 2 more items
 sw $ra, 4($sp) # save the return address
 sw $a0, 0($sp) # save the argument n
 slti $t0, $a0, 1 # $t0 = $a0 x 2
 beq, $t0, $0, L1 # if $t0 = 0, goto L1
 add $v0, $0, 1 # return 1
 add $sp, $sp, 8 # pop two items from the stack
 jr $ra # return to the instruction after jal
L1: addi $a0, $a0, −1 # subtract 1 from argument
 jal FACT # call fact(n−1)
 lw $a0, 0($sp) # just returned from jal: restore n
 lw $ra, 4($sp) # restore the return address
 add $sp, $sp, 8 # pop two items from the stack
 mul $v0, $a0, $v0 # return n*fact(n−1)
 jr $ra # return to the caller

2.20.2

a. 25 MIPS instructions to execute non-recursive vs. 45 instructions to execute (corrected version
of) recursion

Non-recursive version:

FACT: addi $sp, $sp, −4
 sw $ra, 4($sp)
 add $s0, $0, $a0
 add $s2, $0, $1

LOOP: slti $t0, $s0, 2
 bne $t0, $0, DONE
 mul $s2, $s0, $s2
 addi $s0, $s0, −1
 j LOOP

DONE: add $v0, $0, $s2
 lw $ra, 4($sp)
 addi $sp, $sp, 4
 jr $ra

b. 25 MIPS instructions to execute non-recursive vs. 45 instructions to execute (corrected version
of) recursion

Non-recursive version:

FACT: addi $sp, $sp, −4
 sw $ra, 4($sp)
 add $s0, $0, $a0
 add $s2, $0, $1

LOOP: slti $t0, $s0, 2
 bne $t0, $0, DONE
 mul $s2, $s0, $s2
 addi $s0, $s0, −1
 j LOOP

DONE: add $v0, $0, $s2
 lw $ra, 4($sp)
 addi $sp, $sp, 4
 jr $ra

Sol02-9780123747501.indd S22Sol02-9780123747501.indd S22 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S23

2.20.3

a. Recursive version
FACT: addi $sp, $sp, −8
 sw $ra, 4($sp)
 sw $a0, 0($sp)
 add $s0, $0, $a0
HERE: slti $t0, $a0, 2
 beq $t0, $0, L1
 addi $v0, $0, 1
 addi $sp, $sp, 8
 jr $ra
L1: addi $a0, $a0, −1
 jal FACT
 mul $v0, $s0, $v0
 lw $a0, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 8
 jr $ra

at label HERE, after calling function FACT with input of 4:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
$sp-> −8 contents of register $a0

at label HERE, after calling function FACT with input of 3:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $a0
 −12 contents of register $ra
$sp-> −16 contents of register $a0

at label HERE, after calling function FACT with input of 2:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $a0
 −12 contents of register $ra
 −16 contents of register $a0
 −20 contents of register $ra
$sp-> −24 contents of register $a0

at label HERE, after calling function FACT with input of 1:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $a0
 −12 contents of register $ra
 −16 contents of register $a0
 −20 contents of register $ra
 −24 contents of register $a0
 −28 contents of register $ra
$sp-> −32 contents of register $a0

Sol02-9780123747501.indd S23Sol02-9780123747501.indd S23 9/3/11 1:55 AM9/3/11 1:55 AM

S24 Chapter 2 Solutions

b. Recursive version
FACT: addi $sp, $sp, −8
 sw $ra, 4($sp)
 sw $a0, 0($sp)
 add $s0, $0, $a0
HERE: slti $t0, $a0, 2
 beq $t0, $0, L1
 addi $v0, $0, 1
 addi $sp, $sp, 8
 jr $ra
L1: addi $a0, $a0, −1
 jal FACT
 mul $v0, $s0, $v0
 lw $a0, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 8
 jr $ra

at label HERE, after calling function FACT with input of 4:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
$sp-> −8 contents of register $a0

at label HERE, after calling function FACT with input of 3:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $a0
 −12 contents of register $ra
$sp-> −16 contents of register $a0

at label HERE, after calling function FACT with input of 2:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $a0
 −12 contents of register $ra
 −16 contents of register $a0
 −20 contents of register $ra
$sp-> −24 contents of register $a0

at label HERE, after calling function FACT with input of 1:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $a0
 −12 contents of register $ra
 −16 contents of register $a0
 −20 contents of register $ra
 −24 contents of register $a0
 −28 contents of register $ra
$sp-> −32 contents of register $a0

Sol02-9780123747501.indd S24Sol02-9780123747501.indd S24 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S25

2.20.4

a. FIB: addi $sp, $sp, −12
 sw $ra, 8($sp)
 sw $s1, 4($sp)
 sw $a0, 0($sp)

 slti $t0, $a0, 3
 beq $t0, $0, L1
 addi $v0, $0, 1
 j EXIT

L1: addi $a0, $a0, −1
 jal FIB
 addi $s1, $v0, $0
 addi $a0, $a0, −1

 jal FIB
 add $v0, $v0, $s1

EXIT: lw $a0, 0($sp)
 lw $s1, 4($sp)
 lw $ra, 8($sp)
 addi $sp, $sp, 12
 jr $ra

b. FIB: addi $sp, $sp, −12
 sw $ra, 8($sp)
 sw $s1, 4($sp)
 sw $a0, 0($sp)

 slti $t0, $a0, 3
 beq $t0, $0, L1
 addi $v0, $0, 1
 j EXIT

L1: addi $a0, $a0, −1
 jal FIB
 addi $s1, $v0, $0
 addi $a0, $a0, −1

 jal FIB
 add $v0, $v0, $s1

EXIT: lw $a0, 0($sp)
 lw $s1, 4($sp)
 lw $ra, 8($sp)
 addi $sp, $sp, 12
 jr $ra

Sol02-9780123747501.indd S25Sol02-9780123747501.indd S25 9/3/11 1:55 AM9/3/11 1:55 AM

S26 Chapter 2 Solutions

2.20.5

a. 23 MIPS instructions to execute non-recursive vs. 73 instructions to execute (corrected version
of) recursion

Non-recursive version:

FIB: addi $sp, $sp, −4
 sw $ra, ($sp)
 addi $s1, $0, 1
 addi $s2, $0, 1
LOOP: slti $t0, $a0, 3
 bne $t0, $0, EXIT
 add $s3, $s1, $0
 add $s1, $s1, $s2
 add $s2, $s3, $0
 addi $a0, $a0, −1
 j LOOP
EXIT: add $v0, s1, $0
 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

b. 23 MIPS instructions to execute non-recursive vs. 73 instructions to execute (corrected version
of) recursion

Non-recursive version:

FIB: addi $sp, $sp, −4
 sw $ra, ($sp)
 addi $s1, $0, 1
 addi $s2, $0, 1
LOOP: slti $t0, $a0, 3
 bne $t0, $0, EXIT
 add $s3, $s1, $0
 add $s1, $s1, $s2
 add $s2, $s3, $0
 addi $a0, $a0, −1
 j LOOP
EXIT: add $v0, s1, $0
 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

Sol02-9780123747501.indd S26Sol02-9780123747501.indd S26 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S27

2.20.6

a. Recursive version
FIB: addi $sp, $sp, −12
 sw $ra, 8($sp)
 sw $s1, 4($sp)
 sw $a0, 0($sp)

HERE: slti $t0, $a0, 3
 beq $t0, $0, L1
 addi $v0, $0, 1
 j EXIT

L1: addi $a0, $a0, −1
 jal FIB
 addi $s1, $v0, $0
 addi $a0, $a0, −1

 jal FIB
 add $v0, $v0, $s1

EXIT: lw $a0, 0($sp)
 lw $s1, 4($sp)
 lw $ra, 8($sp)
 addi $sp, $sp, 12
 jr $ra

at label HERE, after calling function FIB with input of 4:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $s1
$sp-> −12 contents of register $a0

b. Recursive version
FIB: addi $sp, $sp, −12
 sw $ra, 8($sp)
 sw $s1, 4($sp)
 sw $a0, 0($sp)

HERE: slti $t0, $a0, 3
 beq $t0, $0, L1
 addi $v0, $0, 1
 j EXIT

L1: addi $a0, $a0, −1
 jal FIB
 addi $s1, $v0, $0
 addi $a0, $a0, −1

 jal FIB
 add $v0, $v0, $s1

EXIT: lw $a0, 0($sp)
 lw $s1, 4($sp)
 lw $ra, 8($sp)
 addi $sp, $sp, 12
 jr $ra

at label HERE, after calling function FIB with input of 4:
old $sp -> 0xnnnnnnnn ???
 −4 contents of register $ra
 −8 contents of register $s1
$sp-> −12 contents of register $a0

Sol02-9780123747501.indd S27Sol02-9780123747501.indd S27 9/3/11 1:55 AM9/3/11 1:55 AM

S28 Chapter 2 Solutions

Solution 2.21
2.21.1

a. MAIN: addi $sp, $sp, −4
 sw $ra, ($sp)

 addi $a0, $0, 10
 addi $a1, $0, 20
 jal FUNC
 add $t2, $v0 $0

 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

FUNC: lw $t1, ($s0) #assume $s0 has global variable base
 sub $t0, $v0, $v1
 addi $v0, $t0, $t1
 jr $ra

b. MAIN: addi $sp, $sp, −4
 sw $ra, ($sp)

 lw $t1, ($s0) #assume $s0 has global variable base
 addi $a0, $t1, 1
 jal LEAF
 add $t2, $v0 $0

 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

LEAF: addi $v0, $a0, 1
 jr $ra

2.21.2

a. after entering function main:
old $sp -> 0x7ffffffc ???
$sp-> −4 contents of register $ra

after entering function my_function:
old $sp -> 0x7ffffffc ???
 −4 contents of register $ra
$sp-> −8 contents of register $ra (return to main)

global pointers:
0x10008000 100 my_global

Sol02-9780123747501.indd S28Sol02-9780123747501.indd S28 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S29

b. after entering function main:
old $sp -> 0x7ffffffc ???
$sp-> −4 contents of register $ra

global pointers:
0x10008000 100 my_global

after entering function leaf_function:
old $sp -> 0x7ffffffc ???
 −4 contents of register $ra
$sp-> −8 contents of register $ra (return to main)

global pointers:
0x10008000 101 my_global

2.21.3

a. MAIN: addi $sp, $sp, −4
 sw $ra, ($sp)

 addi $a0, $0, 10
 addi $a1, $0, 20
 jal FUNC
 add $t2, $v0 $0

 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

FUNC: lw $t1, ($s0) #assume $s0 has global variable base
 sub $t0, $v0, $v1
 addi $v0, $t0, $t1
 jr $ra

b. MAIN: addi $sp, $sp, −4
 sw $ra, ($sp)

 lw $t1, ($s0) #assume $s0 has global variable base
 addi $a0, $t1, 1
 jal LEAF
 add $t2, $v0 $0

 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

LEAF: addi $v0, $a0, 1
 jr $ra

Sol02-9780123747501.indd S29Sol02-9780123747501.indd S29 9/3/11 1:55 AM9/3/11 1:55 AM

S30 Chapter 2 Solutions

2.21.4

a. The return address of the function is in $ra, so the last instruction should be “jr $ra.”

b. The tail call to g must use jr, not jal. If jal is used, it overwrites the return address so function g
returns back to f, not to the original caller of f as intended.

2.21.5

a. int f(int a, int b, int c){
 if(c)
 return (a+b);
 return (a−b);
}

b. int f(int a, int b, int c, int d){
 if(a>c+d)
 return b;
 return g(b);
}

2.21.6

a. The function returns 101 (1000 is nonzero, so it returns 1+100).

b. The function returns 500 (c+d is 1030, which is larger than 1, so the function returns g(b),
which according to the problem statement is 500).

Solution 2.22
2.22.1

a. 68 65 6C 6C 6F 20 77 6F 72 6C 64

b. 48 49 50 51 52 53 54 55 56 57

2.22.2

a. U+0038, U+0020, U+0062, U+0069, U+0074, U+0073

b. U+0030, U+0031, U+0032, U+0033, U+0034, U+0035, U+0036, U+0037,
U+0038, U+0039

2.22.3

a. ADD

b. MIPS

Sol02-9780123747501.indd S30Sol02-9780123747501.indd S30 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S31

Solution 2.23
2.23.1

a. MAIN: addi $sp, $sp, −4
 sw $ra, ($sp)
 add $t6, $0, 0x30 # ‘0’
 add $t7, $0, 0x39 # ‘9’
 add $s0, $0, $0
 add $t0, $a0, $0

LOOP: lb $t1, ($t0)
 slt $t2, $t1, $t6
 bne $t2, $0, DONE
 slt $t2, $t7, $t1
 bne $t2, $0, DONE
 sub $t1, $t1, $t6
 beq $s0, $0, FIRST
 mul $s0, $s0, 10
FIRST: add $s0, $s0, $t1
 addi $t0, $t0, 1
 j LOOP

DONE: add $v0, $s0, $0
 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

b. MAIN: addi $sp, $sp, −4
 sw $ra, ($sp)
 add $t4, $0, 0x41 # ‘A’
 add $t5, $0, 0x46 # ‘F’
 add $t6, $0, 0x30 # ‘0’
 add $t7, $0, 0x39 # ‘9’
 add $s0, $0, $0
 add $t0, $a0, $0

LOOP: lb $t1, ($t0)
 slt $t2, $t1, $t6
 bne $t2, $0, DONE
 slt $t2, $t7, $t1
 bne $t2, $0, HEX
 sub $t1, $t1, $t6
 j DEC
HEX: slt $t2, $t1, $t4
 bne $t2, $0, DONE
 slt $t2, $t5, $t1
 bne $t2, $0, DONE
 sub $t1, $t1, $t4
 addi $t1, $t1, 10
DEC: beq $s0, $0, FIRST
 mul $s0, $s0, 10
FIRST: add $s0, $s0, $t1
 addi $t0, $t0, 1
 j LOOP

DONE: add $v0, $s0, $0
 lw $ra, ($sp)
 addi $sp, $sp, 4
 jr $ra

Sol02-9780123747501.indd S31Sol02-9780123747501.indd S31 9/3/11 1:55 AM9/3/11 1:55 AM

S32 Chapter 2 Solutions

Solution 2.24
2.24.1

a. 0x00000012

b. 0x0012ffff

2.24.2

a. 0x00000080

b. 0x00800000

2.24.3

a. 0x00000011

b. 0x00115555

Solution 2.25
2.25.1 Generally, all solutions are similar:

lui $t1, top_16_bits
ori $t1, $t1, bottom_16_bits

2.25.2 Jump can go up to 0x0FFFFFFC.

a. no

b. yes

2.25.3 Range is 0x604 + 0x1FFFC = 0x0002 0600 to 0x604 – 0x20000 = 0xFFFE
0604.

a. no

b. no

2.25.4 Range is 0x1FFFF004 + 0x1FFFC = 0x2001F000 to 0x1FFFF004 – 0x20000
= 1FFDF004

a. yes

b. no

Sol02-9780123747501.indd S32Sol02-9780123747501.indd S32 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S33

2.25.5 Generally, all solutions are similar:

add $t1, $0, $0 #clear $t1
addi $t2, $0, top_8_bits #set top 8b
sll $t2, $t2, 24 #shift left 24 spots
or $t1, $t1, $t2 #place top 8b into $t1
addi $t2, $0, nxt1_8_bits #set next 8b
sll $t2, $t2, 16 #shift left 16 spots
or $t1, $t1, $t2 #place next 8b into $t1
addi $t2, $0, nxt2_8_bits #set next 8b
sll $t2, $t2, 24 #shift left 8 spots
or $t1, $t1, $t2 #place next 8b into $t1
ori $t1, $t1, bot_8_bits #or in bottom 8b

2.25.6

a. 0x12345678

b. 0x00000000

2.25.7

a. t0 = (0x1234 << 16) + 0x5678;

b. t0 = (0x1234 << 16) && 0x5678;

Solution 2.26
2.26.1 Branch range is 0x00020000 to 0xFFFE0004.

a. one branch

b. one branch

2.26.2

a. one

b. can’t be done

2.26.3 Branch range is 0x00000200 to 0xFFFFFE04.

a. 256 branches

b. one branch

Sol02-9780123747501.indd S33Sol02-9780123747501.indd S33 9/3/11 1:55 AM9/3/11 1:55 AM

S34 Chapter 2 Solutions

2.26.4

a. branch range is 16× smaller

b. branch range is 4× smaller

2.26.5

a. no change

b. jump to addresses 0 to 226 instead of 0 to 228, assuming the PC<0x08000000

2.26.6

a. rs fi eld now 7 bits

b. no change

Solution 2.27
2.27.1

a. MIPS lw/sw instructions: lw $t0, 8($t1)

b. jump

2.27.2

a. i-type

b. j-type

2.27.3

a. + allows memory from (base +/– 215) addresses to be loaded without changing the base
– max size of 64 kB memory array without having to use multiple base addresses

b. + large jump range
– jump range not as large as jump-register
– can only access 1/16th of the total addressable space

2.27.4

a. 0x00400000 beq $s0, $0, FAR
...
0x00403100 FAR: addi $s0, $s0, 1

0x12000c3c

0x22100001

b. 0x00000100 j AWAY
...
0x04000010 AWAY: addi $s0, $s0, 1

0x09000004

0x22100001

Sol02-9780123747501.indd S34Sol02-9780123747501.indd S34 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S35

2.27.5

a. addi $t0, $0, 0x31
 sll $t0, $t0, 8
 beq $s0, $0, TEMP
 ...
TEMP: jr $t0

b. addi $s0, $0, 0x4
 sll $s0, $s0, 24
 ori $s0, $s0, 0x10
 jr $s0
 ...
 addi $s0, $s0, 1

2.27.6

a. 2

b. 3

Solution 2.28
2.28.1

a. 3 instructions

2.28.2

a.
The location specifi ed by the LL instruction is different than the SC instruction; hence, the
operation of the store conditional is undefi ned.

2.28.3

a. try: MOV R3,R4
 LL R2,0(R1)
 ADDI R2, R2, 1
 SC R3,0(R1)
 BEQZ R3,try
 MOV R4,R2

Sol02-9780123747501.indd S35Sol02-9780123747501.indd S35 9/3/11 1:55 AM9/3/11 1:55 AM

S36 Chapter 2 Solutions

2.28.4

a.

Processor 1 Processor 2

Processor 1 Mem Processor 2

Cycle $t1 $t0 ($s1) $t1 $t0

0 1 2 99 30 40

ll $t1, 0($s1) 1 1 2 99 99 40

ll $t1, 0($s1) 2 99 2 99 99 40

sc $t0, 0($s1) 3 99 2 40 99 1

sc $t0, 0($s1) 4 99 0 40 99 1

Processor 1 Processor 2

Processor 1 Mem Processor 2

Cycle $t1 $t0 ($s1) $t1 $t0

0 1 2 99 30 40

ll $t1,0($s1) 1 99 2 99 30 40

ll $t1, 0($s1) 2 99 2 99 99 40

addi $t1,$t1,1 3 99 2 99 100 40

sc $t0, 0($s1) 4 99 2 100 100 1

sc $t0, 0($s1) 5 99 0 100 100 1

b.

Solution 2.29

2.29.1 The critical section can be implemented as:

comment: Not sure what this is...

trylk: li $t1,1
 ll $t0,0($a0)
 bnez $t0,trylk
 sc $t1,0($a0)
 beqz $t1,trylk

 operation

 sw $0,0($a0)

Where operation is implemented as:

a. lw $t0,0($a1)
 slt $t1,$t0,$a2
 bne $t1,$0,skip
 sw $a2,0($a1)
skip:

b. lw $t0,0($a1)
 blez $t0,skip
 sle $t1,$t0,$a2
 bnez $t1,skip
 sw $a2,0($a1)
skip:

Sol02-9780123747501.indd S36Sol02-9780123747501.indd S36 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S37

2.29.2 The entire critical section is now:

a. try: ll $t0,0($a1)
 sle $t1,$t0,$a2
 bnez $t1,skip
 mov $t0,$a2
 sc $t0,0($a1)
 beqz $t0,try
skip:

b. try: ll $t0,0($a1)
 blez $t0,skip
 sle $t1,$t0,$a2
 bnez $t1,skip
 mov $t0,$a2
 sc $t0,0($a1)
 beqz $t0,try
skip:

2.29.3 The code that directly uses LL/SC to update shvar avoids the entire lock/
unlock code. When SC is executed, this code needs 1) one extra instruction to
check the outcome of SC, and 2) if the register used for SC is needed again we need
an instruction to copy its value. However, these two additional instructions may
not be needed, e.g., if SC is not on the best-case path or if it uses a register whose
value is no longer needed. We have:

Lock-based Direct LL/SC implementation

a. 6 + 3 3

b. 6 + 2 2

2.29.4

a. It is possible for one or both processors to complete this code without ever reaching the SC
instruction. If only one executes SC, it completes successfully. If both reach SC, they do so in
the same cycle, but one SC completes fi rst and then the other detects this and fails.

b. It is possible for one or both processors to complete this code without ever reaching the SC
instruction. If only one executes SC, it completes successfully. If both reach SC, they do so in
the same cycle, but one SC completes fi rst and then the other detects this and fails.

2.29.5 Every processor has a different set of registers, so a value in a register can-
not be shared. Therefore, shared variable shvar must be kept in memory, loaded
each time its value is needed, and stored each time a task wants to change the value
of a shared variable. For local variable x there is no such restriction. On the con-
trary, we want to minimize the time spent in the critical section (or between the LL
and SC), so if variable x is in memory it should be loaded to a register before the
critical section to avoid loading it during the critical section.

2.29.6 If we simply do two instances of the code from 2.29.2 one after the other
(to update one shared variable and then the other), each update is performed
atomically, but the entire two-variable update is not atomic, i.e., after the update
to the fi rst variable and before the update to the second variable, another process

Sol02-9780123747501.indd S37Sol02-9780123747501.indd S37 9/3/11 1:55 AM9/3/11 1:55 AM

S38 Chapter 2 Solutions

can perform its own update of one or both variables. If we attempt to do two LLs
(one for each variable), compute their new values, and then do two SC instructions
(again, one for each variable), the second LL causes the SC that corresponds to the
fi rst LL to fail (we have an LL and a SC with a non-register-register instruction
executed between them). As a result, this code can never successfully complete.

Solution 2.30
2.30.1

a. add $t0, $0, $0

b. add $t0, $0, large
beq $t1, $t0, LOOP

2.30.2

a. No. The branch displacement does not depend on the placement of the instruction in the text
segment.

b. Yes. The address of v is not known until the data segment is built at link time.

Solution 2.31
2.31.1

a.

Text Size 0x440

Data Size 0x90

Text Address Instruction

0x00400000 lbu $a0, 8000($gp)

0x00400004 jal 0x0400140

… …

0x00400140 sw $a1, 0x8040($gp)

0x00400144 jal 0x0400000

… …

Data 0x10000000 (X)

… …

0x10000040 (Y)

Sol02-9780123747501.indd S38Sol02-9780123747501.indd S38 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S39

b.

Text Size 0x440

Data Size 0x90

Text Address Instruction

0x00400000 lui $at, 0x1000

0x00400004 ori $a0, $at, 0

… …

0x00400140 sw $a0, 8040($gp)

0x00400144 jmp 0x04002C0

… …

0x004002C0 jal 0x0400000

… …

Data 0x10000000 (X)

… …

0x10000040 (Y)

2.31.2 0x8000 data, 0xFC00000 text. However, because of the size of the beq
immediate fi eld, 218 words is a more practical program limitation.

2.31.3 The limitation on the sizes of the displacement and address fi elds in the
instruction encoding may make it impossible to use branch and jump instructions
for objects that are linked too far apart.

Solution 2.32
2.32.1

a. swap:
lw $v0,0($a0)
lw $v1,0($a1)
sw $v1,0($a0)
sw $v0,0($a1)
jr $ra

b. swap:
lw $t0,0($a0)
lw $t1,0($a1)
add $t0,$t0,$t1
sub $t1,$t0,$t1
sub $t0,$t0,$t1
sw $t0,0($a0)
sw $t1,0($a1)
jr $ra

Sol02-9780123747501.indd S39Sol02-9780123747501.indd S39 9/3/11 1:55 AM9/3/11 1:55 AM

S40 Chapter 2 Solutions

2.32.2

a. Pass the address of v[j] and of v[j+1] to swap. Because the address of v[j] is already in $t2 at
the point when we want to call swap, we can replace the two parameter-passing instructions
before “jal swap” with “mov $a0,$t2” and “addi $a1,$t2,4.”

b. Pass the address of v[j] and of v[j+1] to swap. Because the address of v[j] is already in $t2 at
the point when we want to call swap, we can replace the two parameter-passing instructions
before “jal swap” with “mov $a0,$t2” and “addi $a1,$t2,4.”

2.32.3

a. swap:
lb $v0,0($a0) ; Byte-sized load
lb $v1,0($a1)
sb $v1,0($a0) ; Byte-sized store
sb $v0,0($a1)
jr $ra

b. swap:
lb $t0,0($a0) ; Byte-sized load
lb $t1,0($a1)
add $t0,$t0,$t1
sub $t1,$t0,$t1
sub $t0,$t0,$t1
sb $t0,0($a0) ; Byte-sized store
sb $t1,0($a1)
jr $ra

2.32.4

a. No change to saving/restoring code is needed because the same s-registers are used in the
modifi ed sort() code.

b. No change. This modifi cation affects array address computation and load/store instructions.
We still need to use the same s-registers which need to be saved/restored.

2.32.5 When the array is already sorted, the inner loop always exits in its fi rst
iteration, as soon as it compares v[j] with v[j+1]. We have:

a. The number of instructions in sort() is unchanged. The swap() function is changed, but it is
never executed when sorting an already-sorted array. As a result, we execute exactly the same
number of instructions.

b. The only change in the number of instructions is that sll instructions can be eliminated in both
sort() and swap(). When sorting an already-sorted array, swap() is never executed, and the inner
loop in sort() always exits during its fi rst iteration, so we save one sll instruction per iteration of
the outer loop. Overall, we execute 10 instructions fewer.

2.32.6 When the array is sorted in reverse order, the inner loop always executes
the maximum number of iterations and swap is called in each iteration of the inner
loop (a total of 45 times). We have:

a. The number of instructions in sort() is unchanged. However, the swap() function now has only 5
instructions (instead of 7) so we now execute 90 instructions fewer.

Sol02-9780123747501.indd S40Sol02-9780123747501.indd S40 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S41

b. One fewer instruction is executed each time v[j] is needed to check the “v[j]>v[j+1]” condition
for the inner loop. This happens a total of 45 times. Also, swap() now has one instruction
less (no sll is needed), so there we also execute a total of 45 fewer instructions. Overall, we
execute 90 instructions fewer.

Solution 2.33
2.33.1

a. copy: move $t0,$0
loop: beq $t0,$a2,done
 sll $t1,$t0,2
 add $t2,$t1,$a1
 lw $t2,0($t2)
 add $t1,$t1,$a0
 sw $t2,0($t1)
 addi $t0,$t0,1
 b loop
done: jr $ra

b. shift: move $t0,$0
 addi $t1,$a1,−1
loop: beq $t0,$t1,done
 sll $t2,$t0,2
 add $t2,$t2,$a0
 lw $t3,4($t2)
 sw $t3,0($t2)
 addi $t0,$t0,1
 b loop
done: jr $ra

2.33.2

a. void copy(int *a, int *b, int n){
 int *p,*q;
 for(p=a,q=b;p!=a+n;p++,q++)
 *p=*q;
}

b. void shift(int *a, int n){
 int *p;
 for(p=a;p!=a+n−1;p++)
 p=(p+1);
}

Sol02-9780123747501.indd S41Sol02-9780123747501.indd S41 9/3/11 1:55 AM9/3/11 1:55 AM

S42 Chapter 2 Solutions

2.33.3

a. copy: move $t0,$a0
 move $t1,$a1
 sll $t2,$a2,2
 add $t2,$t2,$a0
loop: beq $t0,$t2,done
 lw $t3,0($t1)
 sw $t3,0($t0)
 addi $t0,$t0,4
 addi $t1,$t1,4
 b loop
done: jr $ra

b. fi nd: move $t0,$a0
 sll $t1,$a1,2
 add $t1,$t1,$a0
loop: beq $t0,$t1,done
 lw $t2,4($t0)
 sw $t2,0($t0)
skip: addi $t0,$t0,4
 b loop
done: jr $ra

2.33.4

Array-based Pointer-based

a. 8 6

b. 7 5

2.33.5

Array-based Pointer-based

a. 3 4

b. 4 3

2.33.6 The code would change to save all t-registers we use to the stack, but this
change is outside the loop body. The loop body itself would stay exactly the same.

Sol02-9780123747501.indd S42Sol02-9780123747501.indd S42 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S43

Solution 2.34
2.34.1

a. add $s0, $s1, $s2
 # no equivalent to ADC in MIPS

b. addi $t0, $0, 4
 beq $s0, $t0, LABEL
 add $s1, $s1, $s0

2.34.2

a. ADD, ADC — both ARM register-register instruction format

b. CMP, ADDNE — both ARM register-register instruction format

2.34.3

a. ORR r0, 0
 NOT r4, r0
 AND r1, r4

b. ROR r1, r2, #16

2.34.4

a. ORR, NOT, AND — all ARM register-register instruction format

b. ROR — an ARM register-register instruction format

Solution 2.35
2.35.1

a. register + offset (displacement or based)

b. rregister + offset and update register

2.35.2

a.
 addi $s1, $s1, 4
 lw $s0, 4($s1)

b. lw $s1, 0($s0)
 lw $s2, 4($s0)
 lw $s3, 8($s0)
 addi $s0, $s0, 12

Sol02-9780123747501.indd S43Sol02-9780123747501.indd S43 9/3/11 1:55 AM9/3/11 1:55 AM

S44 Chapter 2 Solutions

2.35.3

a. addi $s0, $0, 10
LOOP: add $s0, $s0, $s1
 addi $s0, $s0, −1
 bne $s0, $0, LOOP

b. addu $s0, $s0, $s1 # add lower words
 sltu $t0, $s0, $s1 # fi nd sign bit
 addu $t0, $t0, $s2 # add sign bit to upper word
 addu $s2, $t0, $s3 # add upper words

2.35.4

a. 4 ARM vs. 4 MIPS instructions

b. 2 ARM vs. 4 MIPS instructions

2.35.5

a. ARM 0.67 times as fast as MIPS

b. ARM 1.33 times as fast as MIPS

Solution 2.36
2.36.1

a. srl $s1, $s1, 4
add $s3, $s2, $s1

b. add $s3, $s2, $s1

2.36.2

a. add $s3, $s2, $0

b. addi $s3, $s2, 8

2.36.3

a. srl $s1, $s1, 4
add $s3, $s2, $s1

b. add $s3, $s2, $s1

2.36.4

a. ADD r3, r2, #2

b. SUBS r3, r2, −1

Sol02-9780123747501.indd S44Sol02-9780123747501.indd S44 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S45

Solution 2.37
2.37.1

a. START: mov eax, 3
 push eax
 mov eax, 4
 mov ecx, 4
 add eax, ecx
 pop ecx
 add eax, ecx

eax = (4 + 4) + 3

b. START: mov ecx, 100
 mov eax, 0
LOOP: add eax, ecx
 dec ecx
 cmp ecx, 0
 jne LOOP
DONE:

ebx = 0;
for (i=100; i>0; i−−)
 ebx += i

2.37.2

a. START: addi $s0, $0, 3
 addi $sp, $sp, −4
 sw $s0, 0($sp)
 addi $s0, $0, 4
 addi $s2, $0, 4
 add $s0, $s0, $s2
 lw $s2, 0($sp)
 addi $sp, $sp, 4
 add $s0, $s0, $s2

b. START: add $s0, $0, $0
 addi $s2, $0, 100
LOOP: add $s0, $s0, $s2
 addi $s2, $s2, −1
 bne $s2, $0, LOOP

2.37.3

a. push eax 5,3

b. test eax, 0x00200010 7, 1, 8, 32

2.37.4

a. sw $a0, 0($sp)

b. addi $t0, $0, 0x00200010
and $t1, $s0, $t0
slt $t2, $t1, $0

Sol02-9780123747501.indd S45Sol02-9780123747501.indd S45 9/3/11 1:55 AM9/3/11 1:55 AM

S46 Chapter 2 Solutions

Solution 2.38
2.38.1

a. This instruction copies ECX elements, where each element is 2 bytes in size, from an array
pointed to by ESI to an array pointer by EDI.

b. This instruction fi nds the fi rst occurrence of a byte (given in AL) in an array pointed to by EDI.
The search stops when the byte is found, or when the entire length of the array (specifi ed in
ECX) is searched. For example, the C library function strlen can easily be implemented using
this instruction.

2.38.2

a. loop: lh $t0,0($a2)
 sh $t0,0($a1)
 addi $a0,$a0,−1
 addi $a1,$a1,2
 addi $a2,$a2,2
 bnez $a0,loop

b. loop: lb $t0,0($a1)
 beq $t0,$a3,done
 addi $a0,$a0,−1
 addi $a1,$a1,1
 bnez $a0,loop
done:

2.38.3

x86 MIPS Speedup

a. 5 6 1.2

b. 3 5 1.67

2.38.4

MIPS Code Code Size Comparison

a. f: slt $t0,$a1,$a0
 beqz $t0,S
 move $v0,$a2
 jr $ra
S: move $v0,$a3
 jr $ra

MIPS: 6 ´ 4 = 24 bytes
×86: 25 bytes

b. f: beqz $a1,D
 move $t0,zero
 move $t1,$a0
L: addi $t0,$t0,1
 sw $0,0($t1)
 addi $t1,$t1,4
 bne $t0,$a1,L
D: jr $ra

MIPS: 8 ´ 4 = 32 bytes
×86: 31 bytes

Sol02-9780123747501.indd S46Sol02-9780123747501.indd S46 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S47

2.38.5 In MIPS, we fetch the next two consecutive instructions by reading the
next 8 bytes from the instruction memory. In x86, we only know where the second
instruction begins after we have read and decoded the fi rst one, so it is more dif-
fi cult to design a processor that executes multiple instructions in parallel.

2.38.6 Under these assumptions, using x86 leads to a signifi cant slowdown (the
speedup is well below 1):

MIPS Cycles x86 Cycles Speedup

a. 4 15 0.27

b. 2 13 0.15

Solution 2.39
2.39.1

a. 0.76 seconds

b. 2.86 seconds

2.39.2 Answer is no in all cases. Slows down the computer.

CCT = clock cycle time
ICa = instruction count (arithmetic)
ICls = instruction count (load/store)
ICb = instruction count (branch)

new CPU time = 0.75 ´ old ICa ´ CPIa ´ 1.1 ´ oldCCT
 + oldICls ´ CPIls ´ 1.1 ´ oldCCT
 + oldICb ´ CPIb ´ 1.1 ´ oldCCT

The extra clock cycle time adds suffi ciently to the new CPU time such that it is not
quicker than the old execution time in all cases.

2.39.3

a. 107.04% 113.43%

b. 107.52% 114.4%

2.39.4

a. 2.6

b. 3.7

Sol02-9780123747501.indd S47Sol02-9780123747501.indd S47 9/3/11 1:55 AM9/3/11 1:55 AM

S48 Chapter 2 Solutions

2.39.5

a. 0.88

b. 0.26

2.39.6

a. 0.533333333

b. not possible

Solution 2.40
2.40.1

a. In the fi rst iteration $t0 points to a[0] and the lw fetches a[0] as intended. In the second
iteration $t0 points to the next byte and the lw uses a non-aligned address and causes a bus
error. Note that the computation for $t1 (address of a[n]) does not cause a bus error because
that address is not actually used to access memory.

b. In the very fi rst iteration $0 is 0, and the address of the fi rst lw is one byte into a[0] instead of
a[1]. This means this access is non-aligned and causes a bus error.

2.40.2

a. Yes, assuming that × is a sign-extended byte value between -128 and 127. If × is simply a
byte value between 0 and 255, the function only works if neither × nor array a contain values
outside the range of 0..127.

b. Yes.

2.40.3

a. f: move $v0,$0
 move $t0,$a0
 sll $t1,$a1,2 ; We must multiply n by 4 to get the address
 add $t1,$t1,$a0 ; of the end of array a
L: lw $t2,0($t0)
 bne $t2,$a2,S
 addi $v0,$v0,1
S: addi $t0,$t0,4 ; Move to next element in a
 bne $t0,$t1,L
 jr $ra

Sol02-9780123747501.indd S48Sol02-9780123747501.indd S48 9/3/11 1:55 AM9/3/11 1:55 AM

 Chapter 2 Solutions S49

b. f: move $t0,$0
 addi $t1,$a1,−1
L: sll $t2,$t0,2 ; We must multiply the index by 4 before we
 add $t2,$t2,$a0 ; add it to a[] to form the address for lw
 lw $t3,4($t2) ; The offset of a[i+1] from a[i] is 4, not 1
 sw $t3,0($t2)
 addi $t0,$t0,1
 bne $t0,$t1,L
 jr $ra

2.40.4 At the exit from my_alloc, the $sp register is moved to “free” the mem-
ory that is returned to main. Then my_init() writes to this memory to initialize
it. Note that neither my_init nor main access the stack memory in any other way
until sort() is called, so the values at the point where sort() is called are still the
same as those written by my_init:

a. 10, 11, 12, 13, 14

b. 100, 102, 104, 106, 108

2.40.5 In main, register $s0 becomes 5, then my_alloc is called. The address
of the array v “allocated” by my_alloc is 0xffe8, because in my_alloc $sp was
saved at 0xfffc, and then 20 bytes (4 × 5) were reserved for array arr ($sp was dec-
remented by 20 to yield 0xffe8). The elements of array v returned to main are thus
a[0] at 0xffe8, a[1] at 0xffec, a[2] at 0xfff0, a[3] at 0xfff4, and a[4] at 0xfff8. After
my_alloc returns, $sp is back to 0x10000. The value returned from my_alloc
is 0xffe8 and this address is placed into the $s1 register. The my_init function
does not modify $sp, $s0, $s1, $s2, or $s3. When sort() begins to execute, $sp
is 0x1000, $s0 is 5, $s1 is 0xffe7, and $s2 and $s3 keep their original values of −10
and 1, respectively. The sort() procedure then changes $sp to 0xffec (0x1000
minus 20), and writes $s0 to memory at address 0xffec (this is where a[1] is, so a[1]
becomes 5), writes $s1 to memory at address 0xfff0 (this is where a[2] is, so a[2]
becomes 0xffe8), writes $s2 to memory address 0xfff4 (this is where a[3] is, so a[3]
becomes −10), writes $s3 to memory address 0xfff8 (this is where a[4] is, so a[4]
becomes 1), and writes the return address to 0xfffc, which does not affect values in
array v. Now the values of array v are:

a. 10 5 0xffe8 7 1

b. 100 5 0xffe8 7 1

2.40.6 When the sort() procedure enters its main loop, the elements of array v
are sorted without any interference from other stack accesses. The resulting sorted
array is

Sol02-9780123747501.indd S49Sol02-9780123747501.indd S49 9/3/11 1:55 AM9/3/11 1:55 AM

S50 Chapter 2 Solutions

a. 1, 5, 7, 10, 0xffe8

b. 1, 5, 7, 100, 0xffe8

Unfortunately, this is not the end of the chaos caused by the original bug in my_
alloc. When the sort() function begins restoring registers, $ra is read from the
(luckily) unmodifi ed location where it was saved. Then $s0 is read from memory at
address 0xffec (this is where a[1] is), $s1 is read from address 0xfff0 (this is where
a[2] is), $s2 is read from address 0xfff4 (this is where a[3] is), and $s3 is read from
address 0xfff8 (this is where a[4] is). When sort() returns to main(), registers
$s0 and $s1 are supposed to keep n and the address of array v. As a result, after
sort() returns to main(), n and v are:

a. n=5, v=7
So v is a 5-element array of integers that begins at address 7

b. n=5, v=7
So v is a 5-element array of integers that begins at address 7

If we were to actually attempt to access (e.g., print out) elements of array v in the
main() function after this point, the fi rst lw would result in a bus error due to
non-aligned address. If MIPS were to tolerate non-aligned accesses, we would print
out whatever values were at the address v points to (note that this is not the same
address to which my_init wrote its values).

Sol02-9780123747501.indd S50Sol02-9780123747501.indd S50 9/3/11 1:55 AM9/3/11 1:55 AM

 3 Solutions

Solution 3.1
3.1.1

a. 3716

b. 6041

3.1.2

a. 3716

b. 1467

3.1.3

a. 1660 1660

b. 2165 –117

3.1.4

a. 6374

b. 753

3.1.5

a. 7504 (–3504)

b. 7777 (–3777)

3.1.6

a. 111000100000

b. 100011110101

The attraction is that each octal digit contains one of 8 different characters (0–7).
Since with 3 binary bits you can represent 8 different patterns, in octal each digit
requires exactly 3 binary bits. You can write down the conversion directly.

Sol03-9780123747501.indd S1Sol03-9780123747501.indd S1 9/7/11 11:46 PM9/7/11 11:46 PM

S2 Chapter 3 Solutions

Solution 3.2
3.2.1

a. 7B75

b. 6D95

3.2.2

a. 7B75

b. 6D95

3.2.3

a. 5190 5190

b. 9312 9312

3.2.4

a. 8CA4

b. 5730

3.2.5

a. FA00

b. 5730

3.2.6

a. 1100001101010010

b. 0101111011010100

The attraction is that each hex digit contains one of 16 different characters (0–9,
A–E). Since with 4 binary bits you can represent 16 different patterns, in hex each
digit requires exactly 4 binary bits. And bytes are by defi nition 8 bits long, so two
hex digits are all that are required to represent the contents of 1 byte.

Sol03-9780123747501.indd S2Sol03-9780123747501.indd S2 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S3

Solution 3.3
3.3.1

a. Underfl ow (–39)

b. Neither (63)

3.3.2

a. Overfl ow (result = –215, which does not fi t into an SM 8-bit format)

b. Neither (65)

3.3.3

a. Neither (39)

b. Overfl ow (result = –179, which does not fi t into an SM 8-bit format)

3.3.4

a. 15 – 117 = –102

b. –105 – 42 = –128 (–147)

3.3.5

a. 15 + 117 = 127 (132)

b. –105 + 42 = –63

3.3.6

a. 15 + 139 = 154

b. 151 + 214 = 255 (365)

Sol03-9780123747501.indd S3Sol03-9780123747501.indd S3 9/7/11 11:46 PM9/7/11 11:46 PM

S4 Chapter 3 Solutions

Solution 3.4

3.4.1

a. 62 × 12

Step Action Multiplier Multiplicand Product

0 Initial Vals 001 010 000 000 110 010 000 000 000 000

1 lsb = 0, no op 001 010 000 000 110 010 000 000 000 000

Lshift Mcand 001 010 000 001 100 100 000 000 000 000

Rshift Mplier 000 101 000 001 100 100 000 000 000 000

2 Prod = Prod + Mcand 000 101 000 001 100 100 000 001 100 100

Lshift Mcand 000 101 000 011 001 000 000 001 100 100

Rshift Mplier 000 010 000 011 001 000 000 001 100 100

3 lsb = 0, no op 000 010 000 011 001 000 000 001 100 100

Lshift Mcand 000 010 000 110 010 000 000 001 100 100

Rshift Mplier 000 001 000 110 010 000 000 001 100 100

4 Prod = Prod + Mcand 000 001 000 110 010 000 000 111 110 100

Lshift Mcand 000 001 001 100 100 000 000 111 110 100

Rshift Mplier 000 000 001 100 100 000 000 111 110 100

5 lsb = 0, no op 000 000 001 100 100 000 000 111 110 100

Lshift Mcand 000 000 011 001 000 000 000 111 110 100

Rshift Mplier 000 000 011 001 000 000 000 111 110 100

6 lsb = 0, no op 000 000 110 010 000 000 000 111 110 100

Lshift Mcand 000 000 110 010 000 000 000 111 110 100

Rshift Mplier 000 000 110 010 000 000 000 111 110 100

b. 35 × 26

Step Action Multiplier Multiplicand Product

0 Initial Vals 010 110 000 000 011 101 000 000 000 000

1

lsb = 0, no op 010 110 000 000 011 101 000 000 000 000

Lshift Mcand 010 110 000 000 111 010 000 000 000 000

Rshift Mplier 001 011 000 000 111 010 000 000 000 000

2 Prod = Prod + Mcand 001 011 000 000 111 010 000 000 111 010

Lshift Mcand 001 011 000 001 110 100 000 000 111 010

Rshift Mplier 000 101 000 001 110 100 000 000 111 010

Sol03-9780123747501.indd S4Sol03-9780123747501.indd S4 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S5

Step Action Multiplier Multiplicand Product

3 Prod = Prod + Mcand 000 101 000 001 110 100 000 010 101 110

Lshift Mcand 000 101 000 011 101 000 000 010 101 110

Rshift Mplier 000 010 000 011 101 000 000 010 101 110

4 lsb = 0, no op 000 010 000 011 101 000 000 010 101 110

Lshift Mcand 000 010 000 111 010 000 000 010 101 110

Rshift Mplier 000 001 000 111 010 000 000 010 101 110

5 Prod = Prod + Mcand 000 001 000 111 010 000 001 001 111 110

Lshift Mcand 000 001 001 110 100 000 001 001 111 110

Rshift Mplier 000 000 001 110 100 000 001 001 111 110

6 lsb = 0, no op 000 000 001 110 100 000 001 001 111 110

Lshift Mcand 000 000 011 101 000 000 001 001 111 110

Rshift Mplier 000 000 011 101 000 000 001 001 111 110

3.4.2

a. 62 × 12

Step Action Multiplicand Product/Multiplier

0 Initial Vals 110 010 000 000 001 010

1 lsb = 0, no op 110 010 000 000 001 010

Rshift Product 110 010 000 000 000 101

2 Prod = Prod + Mcand 110 010 110 010 000 101

Rshift Mplier 110 010 011 001 000 010

3 lsb = 0, no op 110 010 011 001 000 010

Rshift Mplier 110 010 001 100 100 001

4 Prod = Prod + Mcand 110 010 111 110 100 001

Rshift Mplier 110 010 011 111 010 000

5 lsb = 0, no op 110 010 011 111 010 000

Rshift Mplier 110 010 001 111 101 000

6 lsb = 0, no op 110 010 001 111 101 000

Rshift Mplier 110 010 000 111 110 100

Sol03-9780123747501.indd S5Sol03-9780123747501.indd S5 9/7/11 11:46 PM9/7/11 11:46 PM

S6 Chapter 3 Solutions

b. 35 × 26

Step Action Multiplicand Product/Multiplier

0 Initial Vals 011 101 000 000 010 110

1 lsb = 0, no op 011 101 000 000 010 110

Rshift Mplier 011 101 000 000 001 011

2 Prod = Prod + Mcand 011 101 011 101 001 011

Rshift Product 011 101 001 110 100 101

3 Prod = Prod + Mcand 011 101 101 011 100 101

Rshift Mplier 011 101 010 101 110 010

4 lsb = 0, no op 011 101 010 101 110 010

Rshift Mplier 011 101 001 010 111 001

5 Prod = Prod + Mcand 011 101 100 111 111 001

Rshift Mplier 011 101 010 011 111 100

6 lsb = 0, no op 011 101 010 011 111 100

Rshift Mplier 011 101 001 001 111 110

3.4.3 No solution provided

3.4.4

a. 41 × 33 = 4033

Step Action Mplier Multiplicand Product Sign

0 Initial Values 011 011 000 000 100 001 000 000 000 000 0

Multiplier.sign XOR
Multiplicand.sign
(0 XOR 1)

 1

Make positive 011 011 000 000 000 001 000 000 000 000 1

1 Prod = Prod + Mcand 011 011 000 000 000 001 000 000 000 001 1

Lshift Mcand 011 011 000 000 000 010 000 000 000 001 1

Rshift Mplier 001 101 000 000 000 010 000 000 000 001 1

2 Prod = Prod + Mcand 001 101 000 000 000 010 000 000 000 011 1

Lshift Mcand 001 101 000 000 000 100 000 000 000 011 1

Rshift Mplier 000 110 000 000 000 100 000 000 000 011 1

3 lsb = 0, no op 000 110 000 000 000 100 000 000 000 011 1

Lshift Mcand 000 110 000 000 001 000 000 000 000 011 1

Rshift Mplier 000 011 000 000 001 000 000 000 000 011 1

Sol03-9780123747501.indd S6Sol03-9780123747501.indd S6 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S7

Step Action Mplier Multiplicand Product Sign

4 Prod = Prod + Mcand 000 011 000 000 001 000 000 000 001 011 1

Lshift Mcand 000 011 000 000 010 000 000 000 001 011 1

Rshift Mplier 000 001 000 000 010 000 000 000 001 011 1

5 Prod = Prod + Mcand 000 001 000 000 010 000 000 000 011 011 1

Lshift Mcand 000 001 000 000 100 000 000 000 011 011 1

Rshift Mplier 000 000 000 000 100 000 000 000 011 011 1

6 lsb = 0, no op 000 000 000 000 100 000 000 000 011 011 1

Lshift Mcand 000 000 000 001 000 000 000 000 011 011 1

Rshift Mplier 000 000 000 001 000 000 000 000 011 011 1

7 Prod msb = sign 000 000 000 001 000 000 100 000 011 011 1

b. 60 × 26 = 4540

Step Action Mplier Multiplicand Product Sign

0 Initial Values 010 110 000 000 110 000 000 000 000 000 0

Multiplier.sign XOR
Multiplicand.sign
(0 XOR 1)

1

Make positive 010 110 000 000 010 000 000 000 000 000 1

1 lsb = 0, no op 010 110 000 000 010 000 000 000 000 000 1

Lshift Mcand 010 110 000 000 100 000 000 000 000 000 1

Rshift Mplier 001 011 000 000 100 000 000 000 000 000 1

2 Prod = Prod + Mcand 001 011 000 000 100 000 000 000 100 000 1

Lshift Mcand 001 011 000 001 000 000 000 000 100 000 1

Rshift Mplier 000 101 000 001 000 000 000 000 100 000 1

3 Prod = Prod + Mcand 000 101 000 001 000 000 000 001 100 000 1

Lshift Mcand 000 101 000 010 000 000 000 001 100 000 1

Rshift Mplier 000 010 000 010 000 000 000 001 100 000 1

4 lsb = 0, no op 000 010 000 010 000 000 000 001 100 000 1

Lshift Mcand 000 010 000 100 000 000 000 001 100 000 1

Rshift Mplier 000 001 000 100 000 000 000 001 100 000 1

5 Prod = Prod + Mcand 000 001 000 100 000 000 000 101 100 000 1

Lshift Mcand 000 001 001 000 000 000 000 101 100 000 1

Rshift Mplier 000 000 001 000 000 000 000 101 100 000 1

Sol03-9780123747501.indd S7Sol03-9780123747501.indd S7 9/7/11 11:46 PM9/7/11 11:46 PM

S8 Chapter 3 Solutions

Step Action Mplier Multiplicand Product Sign

6 lsb = 0, no op 000 000 001 000 000 000 000 101 100 000 1

Lshift Mcand 000 000 010 000 000 000 000 101 100 000 1

Rshift Mplier 000 000 010 000 000 000 000 101 100 000 1

7 Prod msb = sign 000 000 010 000 000 000 100 101 100 000 1

3.4.5

a. 41 × 33 = −37 × 33 = −1505 (6273)

Step Action Multiplicand Product/Multiplier

0 Initial Vals 100 001 0 000 000 011 011

1 Prod = Prod + Mcand 100 001 1 100 001 011 011

Rshift Mplier 100 001 1 110 000 101 101

2 Prod = Prod + Mcand 100 001 1 010 001 101 101

Rshift Product 100 001 1 101 000 110 110

3 lsb = 0, no op 100 001 1 101 000 110 110

Rshift Mplier 100 001 1 110 100 011 011

4 Prod = Prod + Mcand 100 001 1 010 101 011 011

Rshift Mplier 100 001 1 101 010 101 101

5 Prod = Prod + Mcand 100 001 1 001 011 101 101

Rshift Mplier 100 001 1 100 101 110 110

6 lsb = 0, no op 100 001 1 100 101 110 110

Rshift Mplier 100 001 1 110 010 111 011

b. 60 × 26 = −20 × 26 = −540 (7240)

Step Action Multiplicand Product/Multiplier

0 Initial Vals 110 000 0 000 000 010 110

1 lsb = 0, no op 110 000 0 000 000 010 110

Rshift Mplier 110 000 0 000 000 001 011

2 Prod = Prod + Mcand 110 000 1 110 000 001 011

Rshift Product 110 000 1 111 000 000 101

3 Prod = Prod + Mcand 110 000 1 101 000 000 101

Rshift Mplier 110 000 1 110 100 000 010

4 lsb = 0, no op 110 000 1 110 100 000 010

Rshift Mplier 110 000 1 111 010 000 001

Sol03-9780123747501.indd S8Sol03-9780123747501.indd S8 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S9

Step Action Multiplicand Product/Multiplier

5 Prod = Prod + Mcand 110 000 1 101 010 000 001

Rshift Mplier 110 000 1 110 101 000 000

6 lsb = 0, no op 110 000 1 110 101 000 000

Rshift Mplier 110 000 1 111 010 100 000

3.4.6 No solution provided

Solution 3.5
3.5.1 For hardware, it takes 1 cycle to do the add, 1 cycle to do the shift, and 1
cycle to decide if we are done. So the loop takes (3 × A) cycles, with each cycle being
B time units long.

For a software implementation, it takes 1 cycle to decide what to add, 1 cycle to do
the add, 1 cycle to do each shift, and 1 cycle to decide if we are done. So the loop
takes (5 × A) cycles, with each cycle being B time units long.

a. (3 × 8) × 4tu = 96 time units for hardware
(5 × 8) × 4tu = 160 time units for software

b. (3 × 64) × 8tu = 1536 time units for hardware
(5 × 64) × 8tu = 2560 time units for software

3.5.2 It takes B time units to get through an adder, and there will be A – 1
adders.

a. Word is 8 bits wide, requiring 7 adders. 7 × 4tu = 28 time units.

b. Word is 64 bits wide, requiring 63 adders. 63 × 8tu = 504 time units.

3.5.3 It takes B time units to get through an adder, and the adders are arranged in
a tree structure. It will require log2(A) levels.

a. 8-bit wide word requires 7 adders in 3 levels. 3 × 4tu = 12 time units.

b. 64-bit word requires 63 adders in 6 levels. 6 × 8tu = 48 time units.

Solution 3.6
3.6.1

a. 0x33 × 0x55 = 0x10EF. 0x33 = 51, and 51 = 32 + 16 + 2 + 1. We can shift 0x55 left 5 places
(0xAA0), then add 0x55 shifted left 4 places (0x550), then add 0x55 shifted left once (0xAA),
then add 0x55. 0xAA0 + 0x550 + 0xAA + 0x55 = 0x10EF. 3 shifts, 3 adds.
(Could also use 0x55, which is 64 + 16 + 4 + 1, and shift 0x33 left 6 times, add to it 0x33
shifted left 4 times, add to that 0x33 shifted left 2 times, and add to that 0x33. Same number
of shifts and adds.)

Sol03-9780123747501.indd S9Sol03-9780123747501.indd S9 9/7/11 11:46 PM9/7/11 11:46 PM

S10 Chapter 3 Solutions

b. 0x8A × 0xED = 0x7FC2 0x8A = 128 + 8 + 2, 0xED = 128 + 64 + 32 + 8 + 4 + 1. Best way is to
shift 0xED left 7 places (0x7680), then add to that 0xED shifted left 3 places (0x768), and then
add 0xED shifted left 1 place (0x1DA). 3 shifts, 2 adds.

3.6.2

a. 0x33 × 0x55 = 0x10EF. 0x33 = 51, and 51 = 32 + 16 + 2 + 1. We can shift 0x55 left 5 places
(0xAA0), then add 0x55 shifted left 4 places (0x550), then add 0x55 shifted left once (0xAA),
then add 0x55. 0xAA0 + 0x550 + 0xAA + 0x55 = 0x10EF. 3 shifts, 3 adds.
(Could also use 0x55, which is 64 + 16 + 4 + 1, and shift 0x33 left 6 times, add to it 0x33
shifted left 4 times, add to that 0x33 shifted left 2 times, and add to that 0x33. Same number
of shifts and adds.)

b. 0x8A × 0xED = –0x0A × –0x6D = 0x442 0x0A = 8 + 2, 0x6D = 64 + 32 + 8 + 4 + 1. Best way is to
shift 0x6D left 3 places (0x368), then add to that 0x6D shifted left 1 place (0xDA). 2 shifts, 1 add.

3.6.3 No solution provided

3.6.4 Quoting the Wikipedia entry directly:

Booth’s algorithm involves repeatedly adding one of two predetermined values A
and S to a product P, then performing a rightward arithmetic shift on P. Let x and
y be the multiplicand and multiplier, respectively; and let x and y represent the
number of bits in x and y.

1. Determine the values of A and S, and the initial value of P. All of these
numbers should have a length equal to (x + y + 1).

a. A: Fill the most signifi cant (leftmost) bits with the value of x. Fill the
remaining (y + 1) bits with zeros.

b. S: Fill the most signifi cant bits with the value of (−x) in two’s complement
notation. Fill the remaining (y + 1) bits with zeros.

c. P: Fill the most signifi cant x bits with zeros. To the right of this, append
the value of y. Fill the least signifi cant (rightmost) bit with a zero.

2. Determine the two least signifi cant (rightmost) bits of P.

a. If they are 01, fi nd the value of P + A. Ignore any overfl ow.

b. If they are 10, fi nd the value of P + S. Ignore any overfl ow.

c. If they are 00 or 11, do nothing. Use P directly in the next step.

3. Arithmetically shift the value obtained in the previous step by a single place
to the right. Let P now equal this new value.

4. Repeat steps 2 and 3 until they have been done y times.

5. Drop the least signifi cant (rightmost) bit from P. This is the product of
x and y.

Sol03-9780123747501.indd S10Sol03-9780123747501.indd S10 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S11

3.6.5

a. 0xF6 × 0x7F = −0xA × 0x7F = −10 × 127 = −1270 = 0xFB0A

Action Multiplicand Product/Multiplier

Initial Vals 1111 0110 0000 0000 0111 1111 0

10, subtract 1111 0110 0000 1010 0111 1111 0

shift 1111 0110 0000 0101 0011 1111 1

11, nop 1111 0110 0000 0101 0011 1111 1

shift 1111 0110 0000 0010 1001 1111 1

11, nop 1111 0110 0000 0010 1001 1111 1

shift 1111 0110 0000 0001 0100 1111 1

11, nop 1111 0110 0000 0001 0100 1111 1

shift 1111 0110 0000 0000 1010 0111 1

11, nop 1111 0110 0000 0000 1010 0111 1

shift 1111 0110 0000 0000 0101 0011 1

11, nop 1111 0110 0000 0000 0101 0011 1

shift 1111 0110 0000 0000 0010 1001 1

11, nop 1111 0110 0000 0000 0010 1001 1

shift 1111 0110 0000 0000 0001 0100 1

01, add 1111 0110 1111 0110 0001 0100 1

shift 1111 0110 1111 1011 0000 1010 0

b. 0x08 × 0x55 = 0x2A8

Action Multiplicand Product/Multiplier

Initial Vals 0000 1000 0000 0000 0101 0101 0

10, subtract 0000 1000 1111 1000 0101 0101 0

shift 0000 1000 1111 1100 0010 1010 1

01, add 0000 1000 0000 0100 0010 1010 1

shift 0000 1000 0000 0010 0001 0101 0

10, subtract 0000 1000 1111 1010 0001 0101 0

shift 0000 1000 1111 1101 0000 1010 1

01, add 0000 1000 0000 0101 0000 1010 1

shift 0000 1000 0000 0010 1000 0101 0

10, subtract 0000 1000 1111 1010 1000 0101 0

shift 0000 1000 1111 1101 0100 0010 1

01, add 0000 1000 0000 0101 0100 0010 1

shift 0000 1000 0000 0010 1010 0001 1

Sol03-9780123747501.indd S11Sol03-9780123747501.indd S11 9/7/11 11:46 PM9/7/11 11:46 PM

S12 Chapter 3 Solutions

Action Multiplicand Product/Multiplier

10, subtract 0000 1000 1111 1010 1010 0001 0

shift 0000 1000 1111 1101 0101 0000 1

01, add 0000 1000 0000 0101 0101 0000 1

shift 0000 1000 0000 0010 1010 1000 1

3.6.6 No solution provided

Solution 3.7
3.7.1

a. 74/21 = 3 remainder 9

Step Action Quotient Divisor Remainder

0 Initial Vals 000 000 010 001 000 000 000 000 111 100

1 Rem = Rem – Div 000 000 010 001 000 000 101 111 111 100

Rem < 0, R + D, Q<< 000 000 010 001 000 000 000 000 111 100

Rshift Div 000 000 001 000 100 000 000 000 111 100

2 Rem = Rem – Div 000 000 001 000 100 000 111 000 011 100

Rem < 0, R + D, Q<< 000 000 001 000 100 000 000 000 111 100

Rshift Div 000 000 000 100 010 000 000 000 111 100

3 Rem = Rem – Div 000 000 000 100 010 000 111 100 101 100

Rem < 0, R + D, Q<< 000 000 000 100 010 000 000 000 111 100

Rshift Div 000 000 000 010 001 000 000 000 111 100

4 Rem = Rem – Div 000 000 000 010 001 000 111 110 110 100

Rem < 0, R + D, Q<< 000 000 000 010 001 000 000 000 111 100

Rshift Div 000 000 000 001 000 100 000 000 111 100

5 Rem = Rem – Div 000 000 000 001 000 100 111 111 111 000

Rem < 0, R + D, Q<< 000 000 000 001 000 100 000 000 111 100

Rshift Div 000 000 000 000 100 010 000 000 111 100

6 Rem = Rem – Div 000 000 000 000 100 010 000 000 011 010

Rem > 0, Q << 1 000 001 000 000 100 010 000 000 011 010

Rshift Div 000 001 000 000 010 001 000 000 011 010

7 Rem = Rem – Div 000 001 000 000 010 001 000 000 001 001

Rem > 0, Q << 1 000 011 000 000 010 001 000 000 001 001

Rshift Div 000 011 000 000 001 000 000 000 001 001

Sol03-9780123747501.indd S12Sol03-9780123747501.indd S12 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S13

b. 76/52 = 1 remainder 24

Step Action Quotient Divisor Remainder

0 Initial Vals 000 000 101 010 000 000 000 000 111 110

1 Rem = Rem – Div 000 000 101 010 000 000 101 001 000 010

Rem < 0, R + D, Q<< 000 000 101 010 000 000 000 000 111 110

Rshift Div 000 000 010 101 000 000 000 000 111 110

2 Rem = Rem – Div 000 000 010 101 000 000 101 011 111 110

Rem < 0, R + D, Q<< 000 000 010 101 000 000 000 000 111 110

Rshift Div 000 000 001 010 100 000 000 000 111 110

3 Rem = Rem – Div 000 000 001 010 100 000 110 110 011 110

Rem < 0, R + D, Q<< 000 000 001 010 100 000 000 000 111 110

Rshift Div 000 000 000 101 010 000 000 000 111 110

4 Rem = Rem – Div 000 000 000 101 010 000 111 011 101 110

Rem < 0, R + D, Q<< 000 000 000 101 010 000 000 000 111 110

Rshift Div 000 000 000 010 101 000 000 000 111 110

5 Rem = Rem – Div 000 000 000 010 101 000 111 110 010 110

Rem < 0, R + D, Q<< 000 000 000 010 101 000 000 000 111 110

Rshift Div 000 000 000 001 010 100 000 000 111 110

6 Rem = Rem – Div 000 000 000 001 010 100 111 111 101 101

Rem < 0, R = D, Q<< 000 000 000 001 010 100 000 000 111 110

Rshift Div 000 000 000 000 101 010 000 000 111 110

7 Rem = Rem – Div 000 000 000 000 101 010 000 000 010 100

Rem > 0, Q << 1 000 001 000 000 101 010 000 000 010 100

Rshift Div 000 001 000 000 010 101 000 000 010 100

3.7.2 In these solutions a 1 or a 0 was added to the quotient if the remainder was
greater than or equal to 0. However, an equally valid solution is to shift in a 1 or 0,
but if you do this you must do a compensating right shift of the remainder (only
the remainder, not the entire remainder/quotient combination) after the last step.

a. 74/21 = 3 remainder 11

Step Action Divisor Remainder/Quotient

0 Initial Vals 010 001 000 000 111 100

1 R<< 010 001 000 001 111 000

Rem = Rem – Div 010 001 111 000 111 000

Rem < 0, R + D 010 001 000 001 111 000

Sol03-9780123747501.indd S13Sol03-9780123747501.indd S13 9/7/11 11:46 PM9/7/11 11:46 PM

S14 Chapter 3 Solutions

Step Action Divisor Remainder/Quotient

2 R<< 010 001 000 011 110 000

Rem = Rem – Div 010 001 110 010 110 000

Rem < 0, R + D 010 001 000 011 110 000

3 R<< 010 001 000 111 100 000

Rem = Rem – Div 010 001 110 110 110 000

Rem < 0, R + D 010 001 000 111 100 000

4 R<< 010 001 001 111 000 000

Rem = Rem – Div 010 001 111 110 000 000

Rem < 0, R + D 010 001 001 111 000 000

5 R<< 010 001 011 110 000 000

Rem = Rem – Div 010 001 111 110 000 000

Rem > 0, R0 = 1 010 001 001 101 000 001

6 R<< 010 001 011 010 000 010

Rem = Rem – Div 010 001 001 001 000 010

Rem > 0, R0 = 1 010 001 001 001 000 011

b. 76/52 = 1 remainder 24

Step Action Divisor Remainder/Quotient

0 Initial Vals 101 010 000 000 111 110

1 R<< 101 010 000 001 111 100

Rem = Rem – Div 101 010 101 001 111 100

Rem < 0, R + D 101 010 000 001 111 100

2 R<< 101 010 000 011 111 000

Rem = Rem – Div 101 010 100 111 111 000

Rem < 0, R + D 101 010 000 011 111 000

3 R<< 101 010 000 111 110 000

Rem = Rem – Div 101 010 100 011 110 000

Rem < 0, R + D 101 010 000 111 110 000

4 R<< 101 010 001 111 100 000

Rem = Rem – Div 101 010 100 101 100 000

Rem < 0, R + D 101 010 001 111 100 000

Sol03-9780123747501.indd S14Sol03-9780123747501.indd S14 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S15

Step Action Divisor Remainder/Quotient

5 R<< 101 010 011 111 000 000

Rem = Rem – Div 101 010 110 101 000 000

Rem < 0, R + D 101 010 011 111 000 000

6 R<< 101 010 111 110 000 000

Rem = Rem – Div 101 010 010 100 000 000

Rem > 0, R0 = 1 101 010 010 100 000 001

3.7.3 No solution provided

3.7.4

a. 72/07 = 3 remainder 5: Dividend negative

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = negative
Sign of Remainder = Sign of Dividend = negative

Step Action Quotient Divisor Remainder

0 Initial Vals 000 000 000 111 000 000 000 000 011 010

1 Rem = Rem – Div 000 000 000 111 000 000 111 001 011 010

Rem < 0, R + D, Q<< 000 000 000 111 000 000 000 000 011 010

Rshift Div 000 000 000 011 100 000 000 000 011 010

2 Rem = Rem – Div 000 000 000 011 100 000 111 100 111 010

Rem < 0, R + D, Q<< 000 000 000 011 100 000 000 000 011 010

Rshift Div 000 000 000 001 110 000 000 000 011 010

3 Rem = Rem – Div 000 000 000 001 110 000 111 110 101 010

Rem < 0, R + D, Q<< 000 000 000 001 110 000 000 000 011 010

Rshift Div 000 000 000 000 111 000 000 000 011 010

4 Rem = Rem – Div 000 000 000 000 111 000 111 111 100 010

Rem < 0, R + D, Q<< 000 000 000 000 111 000 000 000 011 010

Rshift Div 000 000 000 000 011 100 000 000 011 010

5 Rem = Rem – Div 000 000 000 000 011 100 111 111 111 110

Rem < 0, R + D, Q<< 000 000 000 000 011 100 000 000 011 010

Rshift Div 000 000 000 000 001 110 000 000 011 010

6 Rem = Rem – Div 000 000 000 000 001 110 000 000 001 100

Rem > 0, Q << 1 000 001 000 000 001 110 000 000 001 100

Rshift Div 000 001 000 000 000 111 000 000 001 100

Sol03-9780123747501.indd S15Sol03-9780123747501.indd S15 9/7/11 11:46 PM9/7/11 11:46 PM

S16 Chapter 3 Solutions

Step Action Quotient Divisor Remainder

7 Rem = Rem – Div 000 001 000 000 000 111 000 000 000 101

Rem < 0, Q << 1 000 011 000 000 000 111 000 000 000 101

Rshift Div 000 011 000 000 000 011 000 000 000 101

8 Set sign bits 100 011 000 000 000 011 100 000 000 101

b. 75/44 = 7 remainder 1: Dividend negative

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = positive
Sign of Remainder = Sign of Dividend = negative

Step Action Quotient Divisor Remainder

0 Initial Vals 000 000 000 100 000 000 000 000 011 101

1 Rem = Rem – Div 000 000 000 100 000 000 111 100 011 101

Rem < 0, R + D, Q<< 000 000 000 100 000 000 000 000 011 101

Rshift Div 000 000 000 010 000 000 000 000 011 101

2 Rem = Rem – Div 000 000 000 010 000 000 111 110 011 101

Rem < 0, R + D, Q<< 000 000 000 010 000 000 000 000 011 101

Rshift Div 000 000 000 001 000 000 000 000 011 101

3 Rem = Rem – Div 000 000 000 001 000 000 111 111 011 101

Rem < 0, R + D, Q<< 000 000 000 001 000 000 000 000 011 101

Rshift Div 000 000 000 000 100 000 000 000 011 101

4 Rem = Rem – Div 000 000 000 000 100 000 111 111 111 101

Rem < 0, R + D, Q<< 000 000 000 000 100 000 000 000 011 101

Rshift Div 000 000 000 000 010 000 000 000 011 101

5 Rem = Rem – Div 000 000 000 000 010 000 000 000 001 101

Rem > 0, Q << 1 000 001 000 000 010 000 000 000 001 101

Rshift Div 000 001 000 000 001 000 000 000 001 101

6 Rem = Rem – Div 000 001 000 000 001 000 000 000 000 101

Rem > 0, Q << 1 000 011 000 000 001 000 000 000 000 101

Rshift Div 000 011 000 000 000 100 000 000 000 101

7 Rem = Rem – Div 000 011 000 000 000 100 000 000 000 001

Rem > 0, Q << 1 000 111 000 000 000 100 000 000 000 001

Rshift Div 000 111 000 000 000 010 000 000 000 001

8 Set sign bits 000 111 000 000 000 010 100 000 000 001

Sol03-9780123747501.indd S16Sol03-9780123747501.indd S16 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S17

3.7.5

a. 72/07 = 3 remainder 5: Dividend negative

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = negative
Sign of Remainder = Sign of Dividend = negative

Step Action Divisor Remainder/Quotient

0 Initial Vals 000 111 000 000 011 010

1 R<< 000 111 000 000 110 100

Rem = Rem – Div 000 111 111 001 110 100

Rem < 0, R + D 000 111 000 000 110 100

2 R<< 000 111 000 001 101 000

Rem = Rem – Div 000 111 111 010 101 000

Rem < 0, R + D 000 111 000 001 101 000

3 R<< 000 111 000 011 010 000

Rem = Rem – Div 000 111 111 100 010 000

Rem < 0, R + D 000 111 000 011 010 000

4 R<< 000 111 000 110 100 000

Rem = Rem – Div 000 111 111 111 100 000

Rem < 0, R + D 000 111 000 110 100 000

5 R<< 000 111 001 101 000 000

Rem = Rem – Div 000 111 000 110 000 000

Rem > 0, R0 = 1 000 111 000 110 000 001

6 R<< 000 111 001 100 000 010

Rem = Rem – Div 000 111 000 101 000 010

Rem > 0, R0 = 1 000 111 000 101 000 011

7 Adjust signs 000 111 100 101 100 011

(Q = –3, Rem = –5)

b. 75/44 = 7 remainder 1: Dividend negative

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = positive
Sign of Remainder = Sign of Dividend = negative

Step Action Divisor Remainder/Quotient

0 Initial Vals 000 100 000 000 011 101

1 R<< 000 100 000 000 111 010

Rem = Rem – Div 000 100 111 100 111 010

Rem < 0, R + D 000 100 000 000 111 010

Sol03-9780123747501.indd S17Sol03-9780123747501.indd S17 9/7/11 11:46 PM9/7/11 11:46 PM

S18 Chapter 3 Solutions

Step Action Divisor Remainder/Quotient

2 R<< 000 100 000 001 110 100

Rem = Rem – Div 000 100 111 101 110 100

Rem < 0, R + D 000 100 000 001 110 100

3 R<< 000 100 000 011 101 000

Rem = Rem – Div 000 100 111 111 101 000

Rem < 0, R + D 000 100 000 011 101 000

4 R<< 000 100 000 111 010 000

Rem = Rem – Div 000 100 000 011 010 000

Rem > 0, R0 = 1 000 100 000 011 010 001

5 R<< 000 100 000 110 100 010

Rem = Rem – Div 000 100 000 010 100 010

Rem > 0,R0 = 1 000 100 000 010 100 011

6 R<< 000 100 000 101 000 110

Rem = Rem – Div 000 100 000 001 000 110

Rem > 0, R0 = 1 000 100 000 001 000 111

7 Adjust signs 000 100 100 001 000 111

(Q = 7, Rem = –1)

3.7.6 No solution provided

Solution 3.8
3.8.1 In these solutions a 1 will be shifted into the quotient and a compensat-
ing right shift of the remainder will be performed. This is the alternate approach
mentioned in Solution Solution 3.7.2: In these solutions a 1 or a 0 was added to the
quotient if the remainder was greater than or equal to 0..

a. 26/05 = 4 remainder 2

Step Action Divisor Remainder/Quotient

0 Initial Vals 000 101 000 000 010 110

R<< 000 101 000 000 101 100

Rem = Rem – Div 000 101 111 011 101 100

1 Rem < 0, Q << 0, Addnext 000 101 110 111 011 000

Rem = Rem + Div 000 101 111 100 011 000

2 Rem < 0, Q << 0, Addnext 000 101 111 000 110 000

Rem = Rem + Div 000 101 111 101 110 000

Sol03-9780123747501.indd S18Sol03-9780123747501.indd S18 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S19

Step Action Divisor Remainder/Quotient

3 Rem < 0, Q << 0, Addnext 000 101 111 011 100 000

Rem = Rem + Div 000 101 000 000 100 000

4 Rem > = 0, Q << 1, Sub 000 101 000 001 000 001

Rem = Rem – Div 000 101 111 100 000 001

5 Rem < 0, Q << 0, Add 000 101 111 000 000 010

Rem = Rem + Div 000 101 111 101 000 010

6 Rem < 0, Q << 0, Add 000 101 111 010 000 100

Rem = Rem + Div 000 101 111 111 000 100

7 Rem < 0, Rem = Rem + Div 000 101 000 100 000 100

Shift Rem >> 1 000 101 000 010 000 100

(Q = 4, Rem = 2)

b. 37/15 = 2 remainder 5

Step Action Divisor Remainder/Quotient

0 Initial Vals 001 101 000 000 011 111

R<< 001 101 000 000 111 110

Rem = Rem – Div 001 101 110 011 111 110

1 Rem < 0, Q << 0, Addnext 001 101 100 111 111 100

Rem = Rem + Div 001 101 110 100 111 100

2 Rem < 0, Q << 0, Addnext 001 101 101 001 111 000

Rem = Rem + Div 001 101 110 110 111 000

3 Rem < 0, Q << 0, Addnext 001 101 101 101 110 000

Rem = Rem + Div 001 101 111 010 110 000

4 Rem < 0, Q << 0, Addnext 001 101 110 101 100 000

Rem = Rem + Div 001 101 000 010 100 000

5 Rem > 0, Q << 1, Subnext 001 101 000 101 000 001

Rem = Rem – Div 001 101 111 000 000 001

6 Rem < 0, Q << 0, Addnext 001 101 110 000 000 010

Rem = Rem + Div 001 101 111 101 000 010

7 Rem < 0, Rem = Rem + Div 001 101 001 010 000 010

Shift Rem >> 1 001 101 000 101 000 010

(Q = 2, Rem = 5)

3.8.2 No solution provided

3.8.3 No solution provided

Sol03-9780123747501.indd S19Sol03-9780123747501.indd S19 9/7/11 11:46 PM9/7/11 11:46 PM

S20 Chapter 3 Solutions

3.8.4

a. 27/6 = 3 remainder 5

Step Action Quotient Temp Divisor Remainder

0 Initial Vals 000000 000000 000000 000110 000000 000000 010111

1 Temp = Rem – Div 000000 111010 010111 000110 000000 000000 010111

Temp < 0, Q << 0 000000 111010 010111 000110 000000 000000 010111

Rshift Div 000000 111010 010111 000011 000000 000000 010111

2 Temp = Rem – Div 000000 111101 010111 000011 000000 000000 010111

Temp < 0, Q << 0 000000 111101 010111 000011 000000 000000 010111

Rshift Div 000000 111101 010111 000001 100000 000000 010111

3 Temp = Rem – Div 000000 111111 110111 000001 100000 000000 010111

Temp < 0, Q << 0 000000 111111 110111 000001 100000 000000 010111

Rshift Div 000000 111111 110111 000000 110000 000000 010111

4 Temp = Rem – Div 000000 111111 100111 000000 110000 000000 010111

Temp < 0, Q << 0 000000 111111 100111 000000 110000 000000 010111

Rshift Div 000000 111111 100111 000000 011000 000000 010111

5 Temp = Rem – Div 000000 111111 111111 000000 011000 000000 010111

Temp < 0, Q << 0 000000 111111 111111 000000 011000 000000 010111

Rshift Div 000000 111111 111111 000000 001100 000000 010111

6 Temp = Rem – Div 000000 000000 001011 000000 001100 000000 010111

T > 0, Q << 1, R = T 000001 000000 001011 000000 001100 000000 001011

Rshift Div 000001 000000 001011 000000 000110 000000 001011

7 Temp = Rem – Div 000001 000000 000101 000000 000110 000000 001011

T > 0, Q << 1, R = T 000011 000000 000101 000000 000110 000000 000101

Rshift Div 000011 000000 000101 000000 000011 000000 000101

b. 54/12 = 4 remainder 4

Step Action Quotient Temp Divisor Remainder

0 Initial Vals 000000 000000 000000 001010 000000 000000 101100

1 Temp = Rem – Div 000000 110110 101100 001010 000000 000000 101100

Temp < 0, Q << 0 000000 110110 101100 001010 000000 000000 101100

Rshift Div 000000 110110 101100 000101 000000 000000 101100

2 Temp = Rem – Div 000000 111011 101100 000101 000000 000000 101100

Temp < 0, Q << 0 000000 111011 101100 000101 000000 000000 101100

Rshift Div 000000 111011 101100 000010 100000 000000 101100

Sol03-9780123747501.indd S20Sol03-9780123747501.indd S20 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S21

Step Action Quotient Temp Divisor Remainder

3 Temp = Rem – Div 000000 111110 001100 000010 100000 000000 101100

Temp < 0, Q << 0 000000 111110 001100 000010 100000 000000 101100

Rshift Div 000000 111110 001100 000001 010000 000000 101100

4 Temp = Rem – Div 000000 111111 011100 000001 010000 000000 101100

Temp < 0, Q << 0 000000 111111 011100 000001 010000 000000 101100

Rshift Div 000000 111111 011100 000000 101000 000000 101100

5 Temp = Rem – Div 000000 000000 000100 000000 101000 000000 101100

T > 0, Q << 1, R = T 000001 000000 000100 000000 101000 000000 000100

Rshift Div 000001 000000 000100 000000 010100 000000 000100

6 Temp = Rem – Div 000001 111111 110000 000000 010100 000000 000100

Temp < 0, Q << 0 000010 111111 110000 000000 010100 000000 000100

Rshift Div 000010 111111 110000 000000 001010 000000 000100

7 Temp = Rem – Div 000010 111111 111010 000000 001010 000000 000100

Temp < 0, Q << 0 000100 111111 111010 000000 001010 000000 000100

Rshift Div 000100 111111 111010 000000 000101 000000 000100

3.8.5 No solution provided

3.8.6 No solution provided

Solution 3.9
3.9.1 No solution provided

3.9.2 No solution provided

3.9.3 No solution provided

Solution 3.10
3.10.1

a. 201326592 201326592

b. –1000144896 3294822400

3.10.2

a. jal 0x00000000

b. lwc1 $3,0($3)

Sol03-9780123747501.indd S21Sol03-9780123747501.indd S21 9/7/11 11:46 PM9/7/11 11:46 PM

S22 Chapter 3 Solutions

3.10.3

a. 0x0C000000 = 0000 1100 0000 0000 0000 0000 0000 0000
= 0 0001 1000 0000 0000 0000 0000 0000 000
sign is positive
exp = 0x18 = 24 – 127 = –103
there is a hidden 1
mantissa = 0
answer = 1.0 x 2 –103

b. 0xC4630000 = 1100 0100 0110 0011 0000 0000 0000 0000
= 1 1000 1000 1100 0110 0000 0000 0000 000
sign is negative
exp = 0x88 = 136 – 127 = 9
there is a hidden 1
mantissa = 0xC60000 = 12 x 16 –1 + 6 x 16 –2
= .75 +.0234375
answer = –1.7734375 x 2 9

3.10.4

a. 63.25 x 10 0 = 111111.01 x 2 0

normalize, move binary point 5 to the left
1.1111101 x 2 5

sign = positive, exp = 127 + 5 = 132
Final bit pattern: 0 1000 0100 1111 1010 0000 0000 0000 000
 = 0100 0010 0111 1101 0000 0000 0000 0000 = 0x427D0000

b. 146987.40625 x 10 0 = 100011111000101011.011010 x 2 0

normalize, move binary point 17 to the left
1.00011111000101011011010 x 2 17

sign = positive, exp = 127 + 17 = 144
Final bit pattern: 0 1001 0000 0001 1111 0001 0101 1011 010
= 0100 1000 0000 1111 1000 1010 1101 1010 = 0x480F8ADA

3.10.5

a. 63.25 x 10 0 = 111111.01 x 2 0

normalize, move binary point 5 to the left
1.1111101 x 2 5

sign = positive, exp = 1023 + 5 = 1028
Final bit pattern:
0 100 0000 0100 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
= 0x404FA00000000000

b. 146987.40625 x 10 0 = 100011111000101011.011010 x 2 0

normalize, move binary point 17 to the left
1.00011111000101011011010 x 2 17

sign = positive, exp = 1023 + 17 = 1040
Final bit pattern:
0 100 0001 0000 0001 1111 0001 0101 1011 0100 0000 0000 0000 0000 0000 0000 0000
= 0x4101F15B40000000

Sol03-9780123747501.indd S22Sol03-9780123747501.indd S22 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S23

3.10.6

a. 63.25 × 100 = 111111.01 × 20 = 3F.40 × 160

move hex point 2 to the left
.3F40 × 162

sign = positive, exp = 64 + 2
Final bit pattern: 01000010001111110100000000000000

b. 146987.40625 × 100 = 10 0011 1110 0010 1011.011010 × 20
= 23E2B.68 × 160

move hex point 5 to the left
.00100011111000101011011010 × 165

sign = positive, exp = 64 + 5 = 69
Final bit pattern: 01000101001000111110001010110110

Solution 3.11
3.11.1

a. –1.5625 × 10–1 = –.15625 × 100

= –.00101 × 20

move the binary point 2 to the right
= –.101 × 2–2

exponent = –2, mantissa = –.101000000000000000000000
answer: 111111111110101100000000000000000000

b. 9.356875 × 102 = 935.6875 × 100

= 0x3A7.B × 160 = 1110100111.1011 × 20

move the binary point 10 to the left
= .11101001111011 × 210

exponent = +10, mantissa = +.11101001111011
answer: 000000001010011101001111011000000000

3.11.2

a. –1.5625 × 10–1 = –.15625 × 100

= –.00101 × 20

move the binary point 3 to the right, = –1.01 × 2–3

exponent = –3 = –3 + 16 = 13, mantissa = –.0100000000
answer: 1011010100000000

b. 9.356875 × 102 = 935.6875 × 100

= 0x3A7.B × 160 = 1110100111.1011 × 20

move the binary point 9 to the left
= 1.1101001111011 × 29

exponent = +9 = 9 + 16 = 25, mantissa = +.1101001111011
answer: 0110011101001111

Sol03-9780123747501.indd S23Sol03-9780123747501.indd S23 9/7/11 11:46 PM9/7/11 11:46 PM

S24 Chapter 3 Solutions

3.11.3

a. –1.5625 × 10–1 = –.15625 × 100

 = –.00101 × 20

move the binary point 2 to the right
 = –.101 × 2–2

exponent = –2, mantissa = –.1010000000000000000000000000
answer: 10110000000000000000000000000101

b. 9.356875 × 102 = 935.6875 × 100

 = 0x3A7.B × 160 = 1110100111.1011 × 20

move the binary point 10 to the left
 = .11101001111011 × 210

exponent = +10, mantissa = +.11101001111011
answer: 01110100111101100000000000010100

3.11.4

a. 2.6125 × 101 + 4.150390625 × 10–1

2.6125 × 101 = 26.125 = 11010.001 = 1.1010001000 × 24

4.150390625 × 10–1 = .4150390625 = .011010100111 = 1.1010100111 × 2–2

Shift binary point 6 to the left to align exponents,

GR

1.1010001000 00
+.0000011010 10 0111 (Guard = 1, Round = 0, Sticky = 1)

1.1010100010 10

In this case the extra bits (G,R,S) are more than half of the least signifi cant bit (0).
Thus, the value is rounded up.
1.1010100011 × 24 = 11010.100011 × 20 = 26.546875 = 2.6546875 × 101

b. –4.484375 × 101 + 1.3953125 × 101

–4.484375 × 101 = –44.84375 = –1.0110011011 × 25

1.1953125 × 101 = 11.953125 = 1.0111111010 × 23

Shift binary point 2 to the left and align exponents,
 GR
–1.0110011011 00
 0.0101111110 10 (Guard = 1, Round = 0, Sticky = 0)

–1.0000011100 10

In this case, the Guard is 1 and the Round and Sticky bits are zero. This is the “exactly half”
case—if the LSB was odd (1) we would add, but since it is even (0) we do nothing.

–1.0000011100 × 25 = –100000.11100 × 20 = –32.875 = –3.2875 × 101

Sol03-9780123747501.indd S24Sol03-9780123747501.indd S24 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S25

3.11.5 No solution provided

3.11.6 No solution provided

Solution 3.12
3.12.1

a. –8.0546875 × –1.79931640625 × 10–1

–8.0546875 = –1.0000000111 × 23

–1.79931640625 × 10–1 = –1.0111000010 × 2–3

Exp: –3 + 3 = 0, 0 + 16 = 16 (10000)
Signs: both negative, result positive

Mantissa:
 1.0000000111
 × 1.0111000010

 00000000000
 10000000111
 00000000000
 00000000000
 00000000000
 00000000000
 10000000111
 10000000111
 10000000111
 00000000000
 10000000111
 1.01110011000001001110

1.0111001100 00 01001110 Guard = 0, Round = 0, Sticky = 1: NoRnd

1.0111001100 × 20 = 0100000111001100 (1.0111001100 = 1.44921875)

–8.0546875 × –.179931640625 = 1.4492931365966796875

Some information was lost because the result did not fi t into the available 10-bit fi eld. Answer
(only) off by .0000743865966796875.

Sol03-9780123747501.indd S25Sol03-9780123747501.indd S25 9/7/11 11:46 PM9/7/11 11:46 PM

S26 Chapter 3 Solutions

b. 8.59375 × 10–2 × 8.125 × 10–1

8.59375 × 10–2 = .0859375 = 1.0110000000 × 2–4

8.125 × 10–1 = .8125 = 1.1010000000 × 2–1

Exp: –4 + –1 = –5, –5 + 16 = 11 (01011)
Signs: both positive, result positive

Mantissa:
 1.0110000000
 × 1.1010000000
 ----------- -
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 10110000000
 00000000000
 10110000000
 10110000000
 1000111100000000000000 Normalize, add one to exponent, negate

–1.0001111000 00 000000000 Guard = 0, Round = 0, Sticky = 0: Nornd

–1.0001111000 × 2–4 = 1011000001111000 (.00010001111000) = .06982421875

.0859375 × .8125 = .06982421875

In this case the two match exactly, since no information was lost during the shifting.

3.12.2 No solution provided

3.12.3 No solution provided

Sol03-9780123747501.indd S26Sol03-9780123747501.indd S26 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S27

3.12.4

a. 8.625 × 101 / –4.875 × 100

8.625 × 101 = 1.0101100100 × 26

–4.875 = –1.0011100000 × 22

Exponent = 6 – 2 = 4, 4 + 16 = 20 (10100)
Signs: one positive, one negative, result negative

Mantissa:
 1.00011011000100111
 10011100000. | 10101100100.0000000000000000
 –10011100000.

 10000100.0000
 –1001110.0000

 1100110.00000
 –100111.00000

 1111.0000000
 –1001.1100000

 101.01000000
 –100.11100000

 000.011000000000

 –.010011100000

 .000100100000000
 –.000010011100000

 .0000100001000000
 –.0000010011100000

 .00000011011000000
 –.00000010011100000

 .00000000110000000

1.000110110001001111 Guard = 0, Round = 1, Sticky = 1: No Round, fi x sign

–1.0001101100 × 24 = 1101000001101100 = 10001.101100 = –17.6875

86.25 / –4.875 = –17.692307692307

Some information was lost because the result did not fi t into the available 10-bit fi eld. Answer
off by .00480769230.

Sol03-9780123747501.indd S27Sol03-9780123747501.indd S27 9/7/11 11:46 PM9/7/11 11:46 PM

S28 Chapter 3 Solutions

b. 1.84375 × 100 / 1.3203125 × 100

1.84375 × 100 = 1.84375 = 1.1101100000 × 20

1.3203125 × 100 = 1.3203125 = 1.0101001000 × 20

Exponent = 0–0 = 0, 0 + 16 = 16 (10000)
Signs: both positive, result positive

Mantissa:
 1.011001010111110
 10101001000. | 11101100000.0000000000000000
 –10101001000.

 1000011000.00
 – 101010010.00

 11000110.000
 – 10101001.000

 11101.000000
 – 10101.001000

 111.11100000
 – 101.01001000

 10.1001100000
 – 1.0101001000

 1.01000110000
 – .10101001000

 .100111010000
 – .010101001000

 .0100100010000
 – .0010101001000

 .00011110010000
 – .00010101001000

 .00001001001000
 – .000010101001000

1.0110010101 11 110 Guard = 1, Round = 1, Sticky = 1: Round up

1.0110010110 × 20 = 0100000110010110 = 1.0110010110 = 1.396484375

1.84375 / 1.3203125 = 1.3964497041420118343195266

Some information was lost because the result did not fi t into the available 10-bit fi eld. Answer
off by .000034671.

3.12.5 No solution provided

3.12.6 No solution provided

Sol03-9780123747501.indd S28Sol03-9780123747501.indd S28 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S29

Solution 3.13
3.13.1

a. (3.984375 × 10–1 + 3.4375 × 10–1) + 1.771 × 103)
3.984375 × 10–1 = 1.1001100000 × 2–2

3.4375 × 10–1 = 1.0110000000 × 2–2

1.771 × 103 = 1771 = 1.1011101011 × 210

shift binary point of smaller left 12 so exponents match

(A) 1.1001100000
(B) +1.0110000000

 10.1111100000 Normalize,
(A+B) 1.0111110000 × 2–1

(C) +1.1011101011
(A+B) .0000000000 10 111110000 Guard=1, Round=0, Sticky=1

(A+B)+C +1.1011101011 10 1 Round up
(A+B)+C =1.1011101100 × 210 = 0110101011101100 = 1772

b. (3.96875 × 100 + 8.46875 × 100) + 2.1921875 × 101

3.96875 × 100 = 1.1111110000 × 21

8.46875 × 100 = 1.0000111100 × 23

2.1921875 × 101 = 1.0101111011 × 24

shift binary point of smaller left 6 so exponents match

(A) .0111111100 00 Guard=0, Round=0, Sticky=0
(B) 1.0000111100

(A+B) 1.1000111000 No round

(A+B) .1100011100 0 Guard=0, Round=0, Sticky=0
(C) +1.0101111011

(A+B)+C 10.0010010111 Normalize, add 1 to exponent, round to even
(A+B)+C = 1.0001001100 × 25 = 0101010001001100 = 34.375

3.13.2

a. 3.984375 × 10–1 + (3.4375 × 10–1 + 1.771 × 103)
3.984375 × 10–1 = 1.1001100000 × 2–2

3.4375 × 10–1 = 1.0110000000 × 2–2

1.771 × 103 = 1771 = 1.1011101011 × 210

shift binary point of smaller left 12 so exponents match

(B) .0000000000 01 0110000000 Guard=0, Round=1, Sticky=1
(C) +1.1011101011

(B+C) +1.1011101011
(A) .0000000000 011001100000

A+(B+C) +1.1011101011 No round
A+(B+C) +1.1011101011 × 210 = 0110101011101011 = 1771

Sol03-9780123747501.indd S29Sol03-9780123747501.indd S29 9/7/11 11:46 PM9/7/11 11:46 PM

S30 Chapter 3 Solutions

b. 3.96875 × 100 + (8.46875 × 100 + 2.1921875 × 101)

3.96875 × 100 = 1.1111110000 × 21

8.46875 × 100 = 1.0000111100 × 23

2.1921875 × 101 = 1.0101111011 × 24

shift binary point of smaller left 6 so exponents match

(B) .1000011110 0 Guard=0, Round=0, Sticky=0
(C) 1.0101111011

(B+C) 1.1110011001 No round
(A) .0011111110 000 Guard=0, Round=0, Sticky=0
(B+C) 1.1110011001

(A+B)+C 10.0010010111 Normalize, add 1 to exponent, round to even
(A+B)+C = 1.0001001100 × 25 = 0101010001001100 = 34.375

3.13.3

a. No, they are not equal: (A + B) + C = 1772, A + (B + C) = 1771 (steps shown above).
Exact: .398437 + .34375 + 1771 = 1771.742187.

b. Yes, they are equal: (A + B) + C = 34.375, A + (B + C) = 34.375 (steps shown above).
Exact answer is 34.359375.

3.13.4

a. (3.41796875 × 10–3 × 6.34765625 × 10–3) × 1.05625 × 102

(A) 3.41796875 × 10–3 = 1.1100000000 × 2–9
(B) 4.150390625 × 10–3 = 1.0001000000 × 2–8

(C) 1.05625 × 102 = 1.1010011010 × 26

Exp: –9 –8 = –17
Signs: both positive, result positive

Mantissa:

(A) 1.1100000000
(B) × 1.0001000000

 11100000000
 11100000000

 1.11011100000000000000

A×B 1.1101110000 00 00000000 Guard = 0, Round = 0, Sticky = 0:
No Round

A×B 1.1101110000 × 2–17 UNDERFLOW: Cannot represent number

Sol03-9780123747501.indd S30Sol03-9780123747501.indd S30 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S31

b. (1.140625 × 102 × –9.135 × 102) × 9.84375 × 10–1

(A) 1.140625 × 102 = 1.1100100001 × 26

(B) –9.135 × 102 = –1.1100100011 × 29

(C) 9.84375 × 10–1 = 1.1111100000 × 2–1

Exp: 6 + 9 = 15
Signs: one positive, one negative - result negative

Mantissa:

(A) 1.1100100001
(B) × 1.1100100011

 11100100001
 11100100001
 11100100001
 11100100001
 11100100001
 11100100001

 11.00101110000010000011 Normalize, add 1 to exponent

 1.1001011100 00 010000011 Guard=0, Round=0, Sticky=1: No Round

A × B –1.1001011100 × 216 OVERFLOW: Cannot represent number

Sol03-9780123747501.indd S31Sol03-9780123747501.indd S31 9/7/11 11:46 PM9/7/11 11:46 PM

S32 Chapter 3 Solutions

3.13.5

a. 3.41796875 × 10–3 × (6.34765625 × 10–3 × 1.05625 × 102)

(A) 3.41796875 × 10–3 = 1.1100000000 × 2–9
(B) 4.150390625 × 10–3 = 1.0001000000 × 2–8

(C) 1.05625 × 102 = 1.1010011010 × 26

Exp: –8 + 6 = –2
Signs: both positive, result positive

Mantissa:

(B) 1.0001000000
(C) × 1.1010011010

 10001000000
 10001000000
 10001000000
 10001000000
 10001000000
 10001000000

 1.110000001110100000000

 1.1100000011 10 100000000 Guard=1, Round=0, Sticky=1:
Round

B × C 1.1100000100 × 2–2

Exp: –9 –2 = –11
Signs: both positive, result positive

Mantissa:

(A) 1.1100000000
(B × C) × 1.1100000100

 11100000000
 11100000000
 11100000000
 11100000000

 11.00010001110000000000 Normalize, add 1 to exponent

 1.1000100011 10 0000000000 Guard = 1, Round = 0, Sticky = 0:
Round to even

A × (B × C) 1.1000100100 × 2–10

Sol03-9780123747501.indd S32Sol03-9780123747501.indd S32 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S33

b. 1.140625 × 102 × (–9.135 × 102 × 9.84375 × 10–1)

(A) 1.140625 × 102 = 1.1100100001 × 26

(B) –9.135 × 102 = –1.1100100011 × 29

(C) 9.84375 × 10–1 = 1.1111100000 × 2–1

Exp: 9 – 1 = 8
Signs: one negative, one positive - result negative

Mantissa:

(B) 1.1100100011
(C) × 1.1111100000

 11100100011
 11100100011
 11100100011
 11100100011
 11100100011
 11100100011

 11.100000110011101 Normalize, add 1 to exponent

 1.1100000110 01 1101000000 Guard=0, Round=1, Sticky=1:
No Round

B × C –1.1100000110 × 29

Exp: 5 + 9 = 14
Signs: one negative, one positive - result negative

Mantissa:

(A) 1.1100100001
(B×C) × 1.1100000110

 11100100001
 11100100001
 11100100001
 11100100001
 11100100001

 11.00100001000111000110 Normalize, add 1 to exponent

 1.1001000010 00 111000110 Guard=0, Round=0, Sticky=1:
No Round

A × (B × C) 1.1001000010 × 215

3.13.6
a. b) No:

A × B = 1.1101110000 × 2–17 UNDERFLOW: Cannot represent
A × (B × C) = 1.1000100100 × 2–10

A and B are both small, so their product does not fi t into the 16-bit fl oating point format
being used.

b. e) No:
A × (B × C) = –1.1001000010 × 215

A × B = –1.1001011100 × 216 OVERFLOW: Cannot be represented
A and B are both large, so their product does not fi t into the 16-bit fl oating point format
being used.

Sol03-9780123747501.indd S33Sol03-9780123747501.indd S33 9/7/11 11:46 PM9/7/11 11:46 PM

S34 Chapter 3 Solutions

Solution 3.14
3.14.1

a. 1.666015625 × 100 × (1.9760 × 104 – 1.9744 × 104)

(A) 1.666015625 × 100 = 1.1010101010 × 20

(B) 1.9760 × 104 = 1.0011010011 × 214

(C) –1.9744 × 104 = –1.0011010010 × 214

Exponents match, no shifting necessary

(B) 1.0011010011
(C) –1.0011010010

(B+C) 0.0000000001 × 214

(B+C) 1.0000000000 × 24

Exp: 0 + 4 = 4
Signs: both positive, result positive

Mantissa:

(A) 1.1010101010
(B+C) × 1.0000000000

 11010101010

 1.10101010100000000000
A×(B+C) 1.1010101010 0000000000 Guard=0, Round=0, Sticky=0: No Round

A × (B + C) 1.1010101010 × 24

b. 3.48 × 102 × (6.34765625 × 10–2 – 4.052734375 × 10–2)

(A) 3.48 × 102 = 1.0101110000 × 28

(B) 6.34765625 × 10–2 = 1.0000010000 × 2–4

(C) –4.052734375 × 10–2 = 1.0100110000 × 2–5

Shift binary point of smaller left 1 so exponents match

(B) 1.0000010000 × 2–4

(C) –.1010011000 0 × 2–4

(B+C) .0101111000 Normalize, subtract 2 from exponent

(B + C) 1.0111100000 × 2–6

Exp: 8 – 6 = 2
Signs: both positive, result positive

Mantissa:

(A) 1.0101110000
(B+C) × 1.0111100000

 10101110000
 10101110000
 10101110000
 10101110000
 10101110000

A×(B+C) 1.1111111100 10000000000 Guard=1, Round=0, Sticky=0:
Round to even

A × (B + C) 1.1111111100 × 22

Sol03-9780123747501.indd S34Sol03-9780123747501.indd S34 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S35

3.14.2

a. 1.666015625 × 100 × (1.9760 × 104 – 1.9744 × 104)

(A) 1.666015625 × 100 = 1.1010101010 × 20

(B) 1.9760 × 104 = 1.0011010011 × 214

(C) –1.9744 × 104 = –1.0011010010 × 214

Exp: 0 + 14 = 14
Signs: both positive, result positive

Mantissa:

(A) 1.1010101010
(B) × 1.0011010011

 11010101010
 11010101010
 11010101010
 11010101010
 11010101010
 11010101010

 10.0000001001100001111 Normalize, add 1 to exponent

A×B 1.0000000100 11 00001111 Guard=1, Round=1, Sticky=1: Round
A×B 1.0000000101 × 215

Exp: 0 + 14 = 14
Signs: one negative, one positive, result negative

Mantissa:

(A) 1.1010101010
(C) × 1.0011010010

 11010101010
 11010101010
 11010101010
 11010101010
 11010101010

 10.0000000111110111010 Normalize, add 1 to exponent
A×C 1.0000000011 11 101110100 Guard=1, Round=1, Sticky=1: Round

A×C –1.0000000100 × 215

A×B 1.0000000101 × 215

A×C –1.0000000100 × 215

A×B+A×C .0000000001 × 215

A × B + A × C 1.0000000000 × 25

Sol03-9780123747501.indd S35Sol03-9780123747501.indd S35 9/7/11 11:46 PM9/7/11 11:46 PM

S36 Chapter 3 Solutions

b. 3.48 × 102 × (6.34765625 × 10–2 – 4.052734375 × 10–2)

(A) 3.48 × 102 = 1.0101110000 × 28

(B) 6.34765625 × 10–2 = 1.0000010000 × 2–4

(C) –4.052734375 × 10–2 = 1.0100110000 × 2–5

Exp: 8 – 4 = 4
Signs: both positive, result positive

Mantissa:

(A) 1.0101110000
(B) × 1.0000010000

 10101110000
 10101110000

 1.01100001011100000000

A×B 1.0110000101 11 00000000 Guard=1, Round=1, Sticky=0: Round
A × B 1.0110000110 × 24

Exp: 8 – 5 = 3
Signs: one negative, one positive, result negative

Mantissa:

(A) 1.0101110000
(C) × 1.0100110000

 10101110000
 10101110000
 10101110000
 10101110000

 1.11000011010100000000

A×C 1.1100001101 0100000000 Guard=0, Round=1, Sticky=0: No Round

A × C –1.1100001101 × 23

A×B 1.0110000110 × 24

A×C –.1110000110 1 × 24 (Guard=1, Round=0, Sticky=0: Round to even)

A×B+A×C .1000000000 × 24
A × B + A × C 1.000000000 × 23

3.14.3

a. b) No:
A × (B + C) = 1.1010101010 × 24 = 26.65625, and (A × B) + (A × C) = 1.0000000000 × 25 = 32
Exact: 1.666015625 × (19760 – 19744) = 26.65625

b. e) No:
A × B + A × C = 1.0000000000 × 23 = 8, and A × (B + C) = 1.1111111100 × 22 = 7.984375
Exact: 348 × (.0634765625 – .04052734375) = 7.986328125

Sol03-9780123747501.indd S36Sol03-9780123747501.indd S36 9/7/11 11:46 PM9/7/11 11:46 PM

 Chapter 3 Solutions S37

3.14.4

Answer Sign Exp Exact?

a. 1 01111101 00000000000000000000000 – –2 Yes

b. 0 01111011 10011001100110011001101 + –4 No

3.14.5

a. b + b + b + b = –1
b × 4 = –1
They are the same

b. e + e + e + e + e + e + e + e + e + e = 1.000000000000000000000100
e × 10 = 1.000000000000000000000100

3.14.6 No solution provided

Solution 3.15
3.15.1

a. 0101 0101 0101 0101 0101 0101 0x.555555 No

b. 0001 1001 1001 1001 1001 1001 .199999 No

3.15.2

a. 0011 0011 0011 0011 0011 0011 .33333 No

b. 0001 0000 0000 0000 0000 0000 .100000 Yes

3.15.3

a. 0101 0000 0000 0000 0000 0000 .500000 Yes

b. 0001 0111 0111 0111 0111 0111 .177777 No

3.15.4

a. 01010 00000 00000 00000 .A000 Yes

b. 00011 00000 00000 00000 .3000 Yes

Sol03-9780123747501.indd S37Sol03-9780123747501.indd S37 9/7/11 11:46 PM9/7/11 11:46 PM

 4 Solutions

Solution 4.1
4.1.1 The values of the signals are as follows:

RegWrite MemRead ALUMux MemWrite ALUop RegMux Branch

a. 1 0 0 (Reg) 0 AND 1 (ALU) 0

b. 0 0 1 (Imm) 1 ADD X 0

ALUMux is the control signal that controls the Mux at the ALU input, 0 (Reg)
selects the output of the register fi le and 1 (Imm) selects the immediate from the
instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the data input to the register
fi le, 0 (ALU) selects the output of the ALU, and 1 (Mem) selects the output of
memory.

A value of X is a “don’t care” (does not matter if signal is 0 or 1).

4.1.2 Resources performing a useful function for this instruction are:

a. All except Data Memory and branch Add unit

b. All except branch Add unit and write port of the Registers

4.1.3

Outputs That Are Not Used No Outputs

a. Branch Add Data Memory

b. Branch Add, write port of Registers None (all units produce outputs)

4.1.4 One long path for AND instruction is to read the instruction, read the
registers, go through the ALU Mux, perform the ALU operation, and go through
the Mux that controls the write data for Registers (I-Mem, Regs, Mux, ALU, and
Mux). The other long path is similar, but goes through Control while registers
are read (I-Mem, Control, Mux, ALU, Mux). There are other paths but they are
shorter, such as the PC increment path (only Add and then Mux), the path to pre-
vent branching (I-Mem to Control to Mux, so the Mux can use the Branch signal
to select the PC + 4 input as the new value for PC), and the path that prevents a
memory write (only I-Mem and then Control, etc.).

Sol04-9780123747501.indd S1Sol04-9780123747501.indd S1 9/2/11 7:35 PM9/2/11 7:35 PM

S2 Chapter 4 Solutions

a. Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

b. The two long paths are equal, so both are critical.

4.1.5 One long path is to read the instruction, read registers, use the Mux to
select the immediate as the second ALU input, use ALU (compute address), access
D-Mem, and use the Mux to select that as register data input, so we have I-Mem,
Regs, Mux, ALU, D-Mem, Mux. The other long path is similar, but goes through
Control instead of Regs (to generate the control signal for the ALU MUX). Other
paths are shorter, and are similar to shorter paths described for 4.1.4.

a. Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

b. The two long paths are equal, so both are critical.

4.1.6 This instruction has two kinds of long paths, those that determine the
branch condition and those that compute the new PC. To determine the branch
condition, we read the instruction, read registers or use the Control unit, then use
the ALU Mux and then the ALU to compare the two values, then use the Zero out-
put of the ALU to control the Mux that selects the new PC. As in 4.4.4 and 4.1.5:

a. The fi rst path (through Regs) is longer.

b. The two long paths are equal, so both are critical.

To compute the PC, one path is to increment it by 4 (Add), add the offset (Add),
and select that value as the new PC (Mux). The other path for computing the PC
is to read the instruction (to get the offset) and use the branch Add unit and Mux.
Both of the compute-PC paths are shorter than the critical path that determines
the branch condition, because I-Mem is slower than the PC + 4 Add unit, and
because ALU is slower than the branch Add.

Solution 4.2
4.2.1 Existing blocks that can be used for this instruction are:

a. This instruction uses instruction memory, both existing read ports of Registers, the ALU (to
compare Rs and Rt), and the write port of Registers.

b. This instruction uses instruction memory, both register read ports, the ALU to add Rd and Rs
together, data memory, and the write port in Registers.

4.2.2 New functional blocks needed for this instruction are:

a. This instruction needs the Zero output of the ALU to be zero-extended to compute the value for
Rd. Then we need to add this as another input to the Mux that selects the value to be written
into Registers.

b. None. This instruction can be implemented using existing blocks.

Sol04-9780123747501.indd S2Sol04-9780123747501.indd S2 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S3

4.2.3 The new control signals are:

a. We need a new control signal for the Mux that selects between values that can be written into
Registers.

b. None. This instruction can be implemented without adding new control signals. It only requires
changes in the Control logic.

4.2.4 Clock cycle time is determined by the critical path, which for the given
latencies happens to be to get the data value for the load instruction: I-Mem (read
instruction), Regs (takes longer than Control), Mux (select ALU input), ALU, Data
Memory, and Mux (select value from memory to be written into Registers). The
latency of this path is 400ps + 200ps + 30ps + 120ps + 350ps + 30ps = 1130ps.

New Clock Cycle Time

a. 1430ps (1130ps + 300ps, ALU is on the critical path)

b. 1130ps. Control latency is now equal to Regs latency, so we have a second critical path (same
as the existing one, but going through Control to generate the control signal for the Mux that
selects second ALU input). This new critical path has the same latency as the existing one, so
the clock cycle is unchanged.

4.2.5 The speedup comes from changes in clock cycle time and changes to the
number of clock cycles we need for the program:

Benefi t

a. We need 5% fewer cycles for a program, but cycle time is 1430 instead of 1130, so we have a
speedup of (1/0.95) ´ (1130/1430) = 0.83, which means we actually have a slowdown.

b. Speedup is 1 (no change in number of cycles, no change in clock cycle time).

4.2.6 The cost is always the total cost of all components (not just those on the
critical path, so the original processor has a cost of I-Mem, Regs, Control, ALU,
D-Mem, 2 Add units, and 3 Mux units, for a total cost of 1000 + 200 + 500 + 100 +
2000 + 2 ´ 30 + 3 ´ 10 = 3890.

We will compute cost relative to this baseline. The performance relative to this
baseline is the speedup we computed in 4.2.5, and our cost/performance relative to
the baseline is as follows:

New Cost Relative Cost Cost/Performance

a. 3890 + 600 = 4490 4490/3890 = 1.15 1.15/0.83 = 1.39. We are paying signifi cantly more for signifi cantly worse
performance, so the cost/performance is a lot worse than with the unmodifi ed
processor.

b. 3890 – 400 = 3490 3490/3890 = 0.9 0.9/1 = 0.9. We are reducing cost and getting the same performance, so the
cost/performance improves.

Sol04-9780123747501.indd S3Sol04-9780123747501.indd S3 9/2/11 7:35 PM9/2/11 7:35 PM

S4 Chapter 4 Solutions

Solution 4.3
4.3.1

a. Logic only.

b. Logic only.

4.3.2

a.

O0

Select0

Select1

Y0

Z0

W0

X0

This shows the schematic for the lowermost two bits, where data inputs to the Mux are X (bits X0
through X7), Y, Z, and W. The data output is O (O0-O7). This schematic is repeated 7 more times
to handle the remaining 7 data bits.

b.

O0

X0

Y0

ALUctl0

ALUctl1

This is the schematic for the lowermost bit, and it needs to be repeated 7 times for the remaining
7 bits. X, Y, and O are the two data inputs and the data output, respectively.

Sol04-9780123747501.indd S4Sol04-9780123747501.indd S4 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S5

4.3.3

a.

O0

Select0

Select1

Y0

Z0

W0

X0

b.

O0
Y0

X0

ALUctl0

ALUctl1

4.3.4 The latency of a path is the latency from an input (or a D-element output)
to an output (or D-element input). The latency of the circuit is the latency of the
path with the longest latency. Note that there are many correct ways to design the
circuit in 4.3.2, and for each solution to 4.3.2 there is a different solution for this
problem.

4.3.5 The cost of the implementation is simply the total cost of all its compo-
nents. Note that there are many correct ways to design the circuit in 4.3.2, and for
each solution to 4.3.2 there is a different solution for this problem.

Sol04-9780123747501.indd S5Sol04-9780123747501.indd S5 9/2/11 7:35 PM9/2/11 7:35 PM

S6 Chapter 4 Solutions

4.3.6

a. A three-input or a four-input gate has a lower latency than a cascade of two 2-input gates. This
means that shorter overall latency is achieved by using 3- and 4-input gates (as in 4.3.2) rather
than cascades of 2-input gates. The schematic shown for 4.3.2 turns out to already be optimal.

b. Because multi-input AND and OR gates have the same latency as 2-input ones, we can use
many-input gates to reduce the number of gates on the path from inputs to outputs. We can use
De-Morgan’s laws to convert sequences of gates into a circuit that only has NOT gates feeding
into AND gates which feed into OR gates.

Solution 4.4

4.4.1 We show the implementation and also determine the latency (in gates)
needed for 4.4.2.

Implementation Latency in Gates

a.

C

B
A

4

b.

C

A
B

4

4.4.2 See answer for 4.4.1 above.

Sol04-9780123747501.indd S6Sol04-9780123747501.indd S6 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S7

4.4.3

Implementation

a.

C
B
A

Signal1

Signal2

b.

Signal2

Signal1
C

B
A

Note: Signal2 is (A AND C) OR (B AND C), which is equal to (A OR B) AND C.

4.4.4

a. The critical path consists of AND, XOR, OR, and OR, for a total of 82ps.

b. The critical path consists of three OR gates, for a total of 150ps.

4.4.5

a. The cost is 1 AND gate, 3 OR gates, and 3 XOR gates, for a total cost of 49.

b. The cost is 1 AND gate and 5 OR gates, for a total cost of 18.

4.4.6 We already computed the cost of the combined circuit. Now we determine
the cost of the separate circuits and the savings.

Combined Cost Separate Cost Saved

a. 49 49 (no change) 0%

b. 18 27 (+ 2 AND and 1 OR gate) (27 – 18)/27 = 33%

Sol04-9780123747501.indd S7Sol04-9780123747501.indd S7 9/2/11 7:35 PM9/2/11 7:35 PM

S8 Chapter 4 Solutions

Solution 4.5
4.5.1

a.

D

C

Q

Start

Clk

X

Y

Carry

Out

b.

D

C

Q

Start

Clk

X

Carry

Out

4.5.2

a.

D

C

Q

Carry_i + 1

X_i + 1

Y_i + 1

X_i

Y_i

Start

Clk

Out_i

Out_i + 1

Sol04-9780123747501.indd S8Sol04-9780123747501.indd S8 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S9

b.

Carry_i + 1

X_i + 1

Out_i

Out_i + 1

D

C

Q

X_i

Start

Clk

4.5.3

Cycle Time Operation Time

a. 76ps (NOT - - > AND - - > AND - - > OR - - > D) 32 ´ 76ps = 2432ps

b. 500ps (NOT - - > AND - - > AND - - > OR - - > D) 32 ´ 500ps = 16000ps

4.5.4

Cycle Time Speedup

a. 100ps (NOT - - > AND - - > AND - - > OR - - > AND - - > OR - - > D) (32 ´ 76ps)/(16 ´ 100ps) = 1.52

b. 690ps (NOT - - > AND - - > AND - - > OR - - > AND - - > OR - - > D) (32 ´ 500ps)/(16 ´ 690ps) = 1.45

4.5.5

Circuit 1 Circuit 2

a. 40 (1 NOT, 3 AND, 1 OR, 2 XOR, 1 D) 64 (1 NOT, 5 AND, 2 OR, 4 XOR, 1 D)

b. 13 (2 NOT, 2 AND, 1 OR, 1 XOR, 1 D) 21 (3 NOT, 3 AND, 2 OR, 2 XOR, 1 D)

Sol04-9780123747501.indd S9Sol04-9780123747501.indd S9 9/2/11 7:35 PM9/2/11 7:35 PM

S10 Chapter 4 Solutions

4.5.6

Cost/Performance
for Circuit 1

Cost/Performance
for Circuit 2 Circuit 1 vs. Circuit 2

a. 40 ´ 32 ´ 76 = 97280 64 ´ 16 ´ 100 = 102400 Cost/performance of Circuit 2 is
worse by about 5.3%

b. 13 ´ 32 ´ 500 = 208000 21 ´ 16 ´ 690 = 231840 Cost/performance of Circuit 2 is
worse by about 11.5%

Solution 4.6
4.6.1 I-Mem takes longer than the Add unit, so the clock cycle time is equal to the
latency of the I-Mem:

a. 200ps

b. 750ps

4.6.2 The critical path for this instruction is through the instruction memory,
Sign-extend and Shift-left-2 to get the offset, Add unit to compute the new PC, and
Mux to select that value instead of PC + 4. Note that the path through the other
Add unit is shorter, because the latency of I-Mem is longer than the latency of the
Add unit. We have:

a. 200ps + 15ps + 10ps + 70ps + 20ps = 315ps

b. 750ps + 100ps + 0ps + 200ps + 50ps = 1100ps

4.6.3 Conditional branches have the same long-latency path that computes the
branch address as unconditional branches do. Additionally, they have a long-
latency path that goes through Registers, Mux, and ALU to compute the PCSrc
condition. The critical path is the longer of the two, and the path through PCSrc is
longer for these latencies:

a. 200ps + 90ps + 20ps + 90ps + 20ps = 420ps

b. 750ps + 300ps + 50ps + 250ps + 50ps = 1400ps

4.6.4

a. PC-relative branches.

b. All instructions except unconditional jumps without a register operand (jal, j).

Sol04-9780123747501.indd S10Sol04-9780123747501.indd S10 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S11

4.6.5

a. PC-relative unconditional branch instructions. We saw in 4.6.3 that this is not on the critical
path of conditional branches, and it is only needed for PC-relative branches. Note that MIPS
does not have actual unconditional branches (BNE zero, zero, Label plays that role so there is
no need for unconditional branch opcodes) so for MIPS the answer to this question is actually
“None.”

b. All instructions except unconditional jumps without a register operand (jal, j).

4.6.6 Of the two instruction (BNE and ADD), BNE has a longer critical path so it
determines the clock cycle time. Note that every path for ADD is shorter than or
equal to the corresponding path for BNE, so changes in unit latency will not affect
this. As a result, we focus on how the unit’s latency affects the critical path of BNE:

a. This unit is not on the critical path, so the only way for this unit to become critical is to increase
its latency until the path for address computation through sign extend, shift left, and branch add
becomes longer than the path for PCSrc through Registers, Mux, and ALU. The latency of Regs,
Mux, and ALU is 200ps and the latency of Sign-extend, Shift-left-2, and Add is 95ps, so the
latency of Shift-left-2 must be increased by 105ps or more for it to affect clock cycle time.

b. This unit is already on the critical path of BNE, so changes in its latency affect the clock cycle
time directly. Even if we speed this unit up to have zero latency, the path through Regs, Mux,
and ALU will take 300ps and remain a critical path (because Sign-extend, Shift-left-2, and Add
also take 300ps).

Solution 4.7
4.7.1 The longest-latency path for ALU operations is through I-Mem, Regs, Mux
(to select ALU operand), ALU, and Mux (to select value for register write). Note that
the only other path of interest is the PC-increment path through Add (PC + 4) and
Mux, which is much shorter. So for the I-Mem, Regs, Mux, ALU, Mux path we have:

a. 200ps + 90ps + 20ps + 90ps + 20ps = 420ps

b. 750ps + 300ps + 50ps + 250ps + 50ps = 1400ps

4.7.2 The longest-latency path for LW is through I-Mem, Regs, Mux (to select
ALU input), ALU, D-Dem, and Mux (to select what is written to register). The
only other interesting paths are the PC-increment path (which is much shorter)
and the path through Sign-extend unit in address computation instead of through
Registers. However, Regs has a longer latency than Sign-extend, so for I-Mem, Regs,
Mux, ALU, D-Mem, and Mux path we have:

a. 200ps + 90ps + 20ps + 90ps + 250ps + 20ps = 670ps

b. 750ps + 300ps + 50ps + 250ps + 500ps + 50ps = 1900ps

Sol04-9780123747501.indd S11Sol04-9780123747501.indd S11 9/2/11 7:35 PM9/2/11 7:35 PM

S12 Chapter 4 Solutions

4.7.3 The answer is the same as in 4.7.2 because the LW instruction has the longest
critical path. The longest path for SW is shorter by one Mux latency (no write to
register), and the longest path for ADD or BNE is shorter by one D-Mem latency.

4.7.4 The data memory is used by LW and SW instructions, so the answer is:

a. 25% + 10% = 35%

b. 30% + 20% = 50%

4.7.5 The sign-extend circuit is actually computing a result in every cycle, but its
output is ignored for ADD and NOT instructions. The input of the sign-extend cir-
cuit is needed for ADDI (to provide the immediate ALU operand), BEQ (to provide
the PC-relative offset), and LW and SW (to provide the offset used in addressing
memory) so the answer is:

a. 20% + 25% + 25% + 10% = 80%

b. 10% + 10% + 30% + 20% = 70%

4.7.6 The clock cycle time is determined by the critical path for the instruction
that has the longest critical path. This is the LW instruction, and its critical path
goes through I-Mem, Regs, Mux, ALU, D-Mem, and Mux so we have:

a. D-Mem has the longest latency, so we reduce its latency from 250ps to 225ps, making the
clock cycle 25ps shorter. The speedup achieved by reducing the clock cycle time is then
670ps/645ps = 1.039.

b. I-Mem has the longest latency, so we reduce its latency from 750ps to 675ps, making the
clock cycle 75ps shorter. The speedup achieved by reducing the clock cycle time is then
1900ps/1825ps = 1.041.

Solution 4.8
4.8.1 To test for a stuck-at-0 fault on a wire, we need an instruction that puts that
wire to a value of 1 and has a different result if the value on the wire is stuck at zero:

a. If this signal is stuck at zero, an instruction that writes to an odd-numbered register will end
up writing to the even-numbered register. So if we place a value of zero in R30 and a value of
1 in R31, and then execute ADD R31, R30, R30 the value of R31 is supposed to be zero. If bit
0 of the Write Register input to the Registers unit is stuck at zero, the value is written to R30
instead and R31 will be 1.

b. The MIPS architecture requires instructions to be word-aligned (lowermost two bits of the
instruction address are always zero). Because of this, we cannot execute an instruction that
would set the specifi ed signal to 1, so we cannot test for this stuck-at-0 fault.

4.8.2 The test for stuck-at-zero requires an instruction that sets the signal to 1
and the test for stuck-at-1 requires an instruction that sets the signal to 0. Because
the signal cannot be both 0 and 1 in the same cycle, we cannot test the same signal
simultaneously for stuck-at-0 and stuck-at-1 using only one instruction. The test
for stuck-at-1 is analogous to the stuck-at-0 test:

Sol04-9780123747501.indd S12Sol04-9780123747501.indd S12 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S13

a. We can place a value of zero in R31 and a value of 1 in R30, then use ADD R30, R31, R31
which is supposed to place 0 in R30. If this signal is stuck-at-1, the write goes to R31 instead,
so the value in R30 remains 1.

b. If this signal is stuck-at-1, a branch instruction, such as BNE zero, zero, Label will result in a
non-aligned PC (lowermost bit will be 1).

4.8.3

a. We need to rewrite the program to use only odd-numbered registers.

b. With this fault, every conditional branch results in a fetch of a misaligned instruction. This
prevents any conditional changes in control fl ow, so the faulty processor is unusable.

4.8.4

a. To set the MemRead signal to 1 (in order to test for stuck-at-0 fault), we need a load instruction.
If MemRead is stuck-at-0, the memory does not get read and the value placed in the register
is “random” (whatever happened to be at the output of the memory unit). Unfortunately,
this “random” value can be the same as the one already in the register, so this test is not
conclusive.

b. To test for this fault, we need an instruction whose MemRead is 1, so it has to be a load.
The instruction also needs to have RegDst set to 0, which is the case for loads. Finally,
the instruction needs to have a different result if MemRead is set to 0. For a load, setting
MemRead to zero would result in not reading memory at all, so the value placed in the register
is “random” (whatever happened to be at the output of the memory unit). Unfortunately,
this “random” value can be the same as the one already in the register, so this test is not
conclusive.

4.8.5

a. If Jump is stuck at 0, the PC after a jump is not the jump address. Instead, the PC is either
incremented (PC + 4) or computed as if this was a PC-relative branch. To test for this fault, we
can place a jump instruction at a low address that jumps to a high address. If the Jump signal
is stuck at 0, the PC after the jump will be much lower than it should be.

To set the MemRead signal to 1 (in order to test for stuck-at-0 fault), we need a load instruction.
If MemRead is stuck-at-0, the memory does not get read and the value placed in the register
is “random” (whatever happened to be at the output of the memory unit). Unfortunately,
this “random” value can be the same as the one already in the register, so this test is not
conclusive.

b. To test for this fault, we need an instruction whose Jump is 1, so it has to be the jump
instruction. However, for the jump instruction the RegDst signal is “don’t care” because it does
not write to any registers, so the implementation may or may not allow us to set RegDst to 0 so
we can test for this fault. As a result, we cannot reliably test for this fault.

4.8.6 Each single-instruction test “covers” all faults that, if present, result in dif-
ferent behavior for the test instruction. To test for as many of these faults as possi-
ble in a single instruction, we need an instruction that sets as many of these signals
to a value that would be changed by a fault. Some signals cannot be tested using
this single-instruction method, because the fault on a signal could still result in
completely correct execution of all instructions that trigger the fault.

Sol04-9780123747501.indd S13Sol04-9780123747501.indd S13 9/2/11 7:35 PM9/2/11 7:35 PM

S14 Chapter 4 Solutions

Solution 4.9
4.9.1

Binary Hexadecimal

a. 101011 10000 00100 0000000001100100 AA040064

b. 000000 00010 00011 00001 00000 101010 0043082A

4.9.2

Read Register 1 Actually Read? Read Register 2 Actually Read?

a. 16 (10000b) Yes 4 (00100b) Yes

b. 2 (00010b) Yes 3 (00011b) Yes

4.9.3

Read Register 1 Register Actually Written?

a. Either 4 (00100b) or 0
(don’t know because RegDst is X)

No

b. 1 (00001b) Yes

4.9.4

Control Signal 1 Control Signal 2

a. ALUSrc = 1 Branch = 0

b. Jump = 0 RegDst = 1

4.9.5 We use I31 through I26 to denote individual bits of Instruction[31:26],
which is the input to the Control unit:

a. ALUSrc = I31

b. Jump = (NOT I31) AND I27

4.9.6 If possible, we try to reuse some or all of the logic needed for one signal to
help us compute the other signal at a lower cost:

a. ALUSrc = I31
Branch = I28

b. RegDst = NOT I31
Jump = RegDst AND I27

Sol04-9780123747501.indd S14Sol04-9780123747501.indd S14 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S15

Solution 4.10
To solve the problems in this exercise, it helps to fi rst determine the latencies of
different paths inside the processor. Assuming zero latency for the Control unit,
the critical path is the path to get the data for a load instruction, so we have I-Mem,
Mux, Regs, Mux, ALU, D-Mem, and Mux on this path.

4.10.1 The Control unit can begin generating MemWrite only after I-Mem is
read. It must fi nish generating this signal before the end of the clock cycle. Note
that MemWrite is actually a write-enable signal for D-Mem fl ip-fl ops, and the
actual write is triggered by the edge of the clock signal, so MemWrite need not
arrive before that time. So the Control unit must generate the MemWrite in one
clock cycle, minus the I-Mem access time:

Critical Path Maximum Time to Generate MemWrite

a. 200ps + 20ps + 90ps + 20ps + 90ps + 250ps + 20ps = 690ps 690ps − 200ps = 490ps

b. 750ps + 50ps + 300ps + 50ps + 250ps + 500ps + 50ps = 1950ps 1950ps − 750ps = 1200ps

4.10.2 All control signals start to be generated after I-Mem read is complete.
The most slack a signal can have is until the end of the cycle, and MemWrite and
 RegWrite are both needed only at the end of the cycle, so they have the most slack.
The time to generate both signals without increasing the critical path is the one
computed in 4.10.1.

 4.10.3 MemWrite and RegWrite are only needed by the end of the cycle. RegDst,
Jump, and MemtoReg are needed one Mux latency before the end of the cycle, so
they are more critical than MemWrite and RegWrite. Branch is needed two Mux
latencies before the end of the cycle, so it is more critical than these. MemRead is
needed one D-Mem plus one Mux latency before the end of the cycle, and D-Mem
has more latency than a Mux, so MemRead is more critical than Branch. ALUOp
must get to ALU control in time to allow one ALU Ctrl, one ALU, one D-Mem,
and one Mux latency before the end of the cycle. This is clearly more critical than
 MemRead. Finally, ALUSrc must get to the pre-ALU Mux in time, one Mux, one
ALU, one D-Mem, and one Mux latency before the end of the cycle. Again, this is
more critical than MemRead. Between ALUOp and ALUSrc, ALUOp is more criti-
cal than ALUSrc if ALU control has more latency than a Mux. If ALUOp is the most
critical, it must be generated one ALU Ctrl latency before the critical-path signals
can go through Mux, Regs, and Mux. If the ALUSrc signal is the most critical, it
must be generated while the critical path goes through Mux and Regs. We have:

The Most Critical Control
Signal Is

Time to Generate It without
Affecting the Clock Cycle Time

a. ALUOp (30ps > 20ps) 20ps + 90ps + 20ps − 30ps = 100ps

b. ALUOp (70ps > 50ps) 50ps + 300ps + 50ps − 70ps = 330ps

Sol04-9780123747501.indd S15Sol04-9780123747501.indd S15 9/2/11 7:35 PM9/2/11 7:35 PM

S16 Chapter 4 Solutions

For the next three problems, it helps to compute for each signal how much time
we have to generate it before it starts affecting the critical path. We already did this
for RegDst and RegWrite in 4.10.1, and in 4.10.3 we described how to do it for the
remaining control signals. We have:

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. 470ps 470ps 450ps 220ps 470ps 100ps 490ps 110ps 490ps

b. 1150ps 1150ps 1100ps 650ps 1150ps 330ps 1200ps 350ps 1200ps

The difference between the allowed time and the actual time to generate the signal
is called “slack.” For this problem, the allowed time will be the maximum time the
signal can take without affecting clock cycle time. If slack is positive, the signal
arrives before it is actually needed and it does not affect clock cycle time. If the
slack is positive, the signal is late and the clock cycle time must be adjusted. We now
compute the slack for each signal:

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. −30ps −30ps 0ps 20ps 20ps −100ps −10ps 10ps −10ps

b. 50ps 150ps 0ps −150ps −50ps 30ps −100ps −50ps 0ps

4.10.4 With this in mind, the clock cycle time is what we computed in 4.10.1,
plus the absolute value of the most negative slack. We have:

Control Signal with the
Most Negative Slack Is

Clock Cycle Time with Ideal
Control Unit (from 4.10.1)

Actual Clock Cycle Time
with These Signal

Latencies

a. ALUOp (−100ps) 690ps 790ps

b. MemRead (−150ps) 1950ps 2100ps

4.10.5 It only makes sense to pay to speed up signals with negative slack, because
improvements to signals with positive slack cost us without improving perfor-
mance. Furthermore, for each signal with negative slack, we need to speed it up
only until we eliminate all its negative slack, so we have:

Signals with
Negative Slack

Per-Processor Cost to
Eliminate All Negative Slack

a. RegWrite (−10ps)
RegDst and Jump (−30ps)

ALUOp (−100ps)

170ps at $1/5ps = $34

b. MemtoReg and ALUSrc (−50ps)
MemWrite (−100ps)
MemRead (−150ps)

350ps at $1/5ps = $70

Sol04-9780123747501.indd S16Sol04-9780123747501.indd S16 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S17

4.10.6 The signal with the most negative slack determines the new clock cycle
time. The new clock cycle time increases the slack of all signals until there is no
remaining negative slack. To minimize cost, we can then slow down signals that
end up having some (positive) slack. Overall, the cost is minimized by slowing
signals down by:

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. 70ps 70ps 100ps 120ps 120ps 0ps 90ps 110ps 90ps

b. 200ps 300ps 150ps 0ps 100ps 180ps 50ps 100ps 150ps

Solution 4.11
4.11.1

Sign-Extend Jump’s Shift-Left-2

a. 00000000000000000000000000010100 0001100010000000000001010000

b. 00000000000000000000100000101010 0010000010000010000010101000

4.11.2

ALUOp[1-0] Instruction[5-0]

a. 00 010100

b. 10 101010

4.11.3

New PC Path

a. PC + 4 PC to Add (PC + 4) to branch Mux to jump Mux to PC

b. PC + 4 PC to Add (PC + 4) to branch Mux to jump Mux to PC

4.11.4

WrReg Mux ALU Mux Mem/ALU Mux Branch Mux Jump Mux

a. 2 or 0 (RegDst is X) 20 X PC + 4 PC + 4

b. 1 −128 0 PC + 4 PC + 4

4.11.5

ALU Add (PC + 4) Add (Branch)

a. −3 and 20 PC and 4 PC + 4 and 20 × 4

b. −32 and −128 PC and 4 PC + 4 and 2090 × 4

Sol04-9780123747501.indd S17Sol04-9780123747501.indd S17 9/2/11 7:35 PM9/2/11 7:35 PM

S18 Chapter 4 Solutions

4.11.6

Read Register 1 Read Register 2 Write Register Write Data RegWrite

a. 3 2 X (2 or 0) X 0

b. 4 2 1 0 1

Solution 4.12
4.12.1

Pipelined Single-Cycle

a. 350ps 1250ps

b. 220ps 950ps

4.12.2

Pipelined Single-Cycle

a. 1750ps 1250ps

b. 1100ps 950ps

4.12.3

Stage to Split New Clock Cycle Time

a. ID 300ps

b. EX 210ps

4.12.4

a. 35%

b. 30%

4.12.5

a. 65%

b. 70%

4.12.6 We already computed clock cycle times for pipelined and single-cycle
organizations in 4.12.1, and the multi-cycle organization has the same clock cycle
time as the pipelined organization. We will compute execution times relative to the
pipelined organization. In single-cycle, every instruction takes one (long) clock
cycle. In pipelined, a long-running program with no pipeline stalls completes one
instruction in every cycle. Finally, a multi-cycle organization completes an LW in

Sol04-9780123747501.indd S18Sol04-9780123747501.indd S18 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S19

5 cycles, an SW in 4 cycles (no WB), an ALU instruction in 4 cycles (no MEM), and
a BEQ in 4 cycles (no WB). So we have the speedup of pipeline:

Multi-Cycle Execution Time Is X Times
Pipelined Execution Time, where X is

Single-Cycle Execution Time Is X Times
Pipelined Execution Time, Where X Is

a. 0.20 × 5 + 0.80 ´ 4 = 4.20 1250ps/350ps = 3.57

b. 0.15 × 5 + 0.85 ´ 4 = 4.15 950ps/220ps = 4.32

Solution 4.13
4.13.1

Instruction Sequence Dependences

a. I1: SW R16,–100(R6)
I2: LW R4,8(R16)
I3: ADD R5,R4,R4

RAW on R4 from I2 to I3

b. I1: OR R1,R2,R3
I2: OR R2,R1,R4
I3: OR R1,R1,R2

RAW on R1 from I1 to I2 and I3
RAW on R2 from I2 to I3
WAR on R2 from I1 to I2
WAR on R1 from I2 to I3
WAW on R1 from I1 to I3

4 .13.2 In the basic fi ve-stage pipeline WAR and WAW dependences do not cause
any hazards. Without forwarding, any RAW dependence between an instruction
and the next two instructions (if register read happens in the second half of the
clock cycle and the register write happens in the fi rst half). The code that eliminates
these hazards by inserting NOP instructions is:

Instruction Sequence

a. SW R16,–100(R6)
LW R4,8(R16)
NOP
NOP
ADD R5,R4,R4

Delay I3 to avoid RAW hazard on R4 from I2

b. OR R1,R2,R3
NOP
NOP
OR R2,R1,R4
NOP
NOP
OR R1,R1,R2

Delay I2 to avoid RAW hazard on R1 from I1

Delay I3 to avoid RAW hazard on R2 from I2

4. 13.3 With full forwarding, an ALU instruction can forward a value to the EX
stage of the next instruction without a hazard. However, a load cannot forward to

Sol04-9780123747501.indd S19Sol04-9780123747501.indd S19 9/2/11 7:35 PM9/2/11 7:35 PM

S20 Chapter 4 Solutions

the EX stage of the next instruction (but can to the instruction after that). The code
that eliminates these hazards by inserting NOP instructions is:

Instruction Sequence

a. SW R16,–100(R6)
LW R4,8(R16)
NOP
ADD R5,R4,R4

Delay I3 to avoid RAW hazard on R4 from I2
Value for R4 is forwarded from I2 now

b. OR R1,R2,R3
OR R2,R1,R4
OR R1,R1,R2

No RAW hazard on R1 from I1 (forwarded)
No RAW hazard on R2 from I2 (forwarded)

4.13.4 The total execution time is the clock cycle time times the number of cycles.
Without any stalls, a three-instruction sequence executes in 7 cycles (5 to complete
the fi rst instruction, then one per instruction). The execution without forwarding
must add a stall for every NOP we had in 4.13.2, and execution forwarding must add
a stall cycle for every NOP we had in 4.13.3. Overall, we get:

No Forwarding With Forwarding Speedup Due to Forwarding

a. (7 + 2) ´ 250ps = 2250ps (7 + 1) ´ 300ps = 2400ps 0.94 (This is really a slowdown)

b. (7 + 4) ´ 180ps = 1980ps 7 ´ 240ps = 1680ps 1.18

4.13.5 With ALU-ALU-only forwarding, an ALU instruction can forward to the
next instruction, but not to the second-next instruction (because that would be
forwarding from MEM to EX). A load cannot forward at all, because it determines
the data value in MEM stage, when it is too late for ALU-ALU forwarding. We have:

Instruction Sequence

a. SW R16,–100(R6)
LW R4,8(R16)
ADD R5,R4,R4 ALU-ALU forwarding of R4 from I2

b. OR R1,R2,R3
OR R2,R1,R4
OR R1,R1,R2

ALU-ALU forwarding of R1 from I1
ALU-ALU forwarding of R2 from I2

4.13.6

No Forwarding
With ALU-ALU

Forwarding Only
Speedup with

ALU-ALU Forwarding

a. (7 + 2) ´ 250ps = 2250ps 7 ´ 290ps = 2030ps 1.11

b. (7 + 4) ´ 180ps = 1980ps 7 ´ 210ps = 1470ps 1.35

Sol04-9780123747501.indd S20Sol04-9780123747501.indd S20 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S21

Solution 4.14
4.14.1 In the pipelined execution shown below, *** represents a stall when an
instruction cannot be fetched because a load or store instruction is using the
 memory in that cycle. Cycles are represented from left to right, and for each instruc-
tion we show the pipeline stage it is in during that cycle:

Instruction Pipeline Stage Cycles

a. SW R16,12(R6)
LW R16,8(R6)
BEQ R5,R4,Lbl
ADD R5,R1,R4
SLT R5,R15,R4

IF ID EX MEM WB
 IF ED EX MEM WB
 IF ID EX MEM WB
 *** *** IF ID EX MEM WB
 IF ID EX MEM WB

11

b. SW R2,0(R3)
OR R1,R2,R3
BEQ R2,R0,Lbl
ADD R1,R4,R3

IF ID EX MEM WB
 IF ED EX MEM WB
 IF ID EX MEM WB
 *** IF ID EX MEM WB

9

We cannot add NOPs to the code to eliminate this hazard—NOPs need to be fetched
just like any other instructions, so this hazard must be addressed with a hardware
hazard detection unit in the processor.

4.14 .2 This change only saves one cycle in an entire execution without data haz-
ards (such as the one given). This cycle is saved because the last instruction fi nishes
one cycle earlier (one less stage to go through). If there were data hazards from
loads to other instructions, the change would help eliminate some stall cycles.

Instructions
Executed

Cycles with
5 Stages

Cycles with
4 Stages Speedup

a. 5 4 + 5 = 9 3 + 5 = 8 9/8 = 1.13

b. 4 4 + 4 = 8 3 + 4 = 7 8/7 = 1.14

4.14.3 Stall-on-branch delays the fetch of the next instruction until the branch
is executed. When branches execute in the EXE stage, each branch causes two stall
cycles. When branches execute in the ID stage, each branch only causes one stall
cycle. Without branch stalls (e.g., with perfect branch prediction) there are no stalls,
and the execution time is 4 plus the number of executed instructions. We have:

Instructions
Executed

Branches
Executed

Cycles with
Branch in EXE

Cycles with
Branch in ID Speedup

a. 5 1 4 + 5 + 1 ´ 2 = 11 4 + 5 + 1 ´ 1 = 10 11/10 = 1.10

b. 4 1 4 + 4 + 1 ´ 2 = 10 4 + 4 + 1 ´ 1 = 9 10/9 = 1.11

Sol04-9780123747501.indd S21Sol04-9780123747501.indd S21 9/2/11 7:35 PM9/2/11 7:35 PM

S22 Chapter 4 Solutions

4.14.4 The number of cycles for the (normal) 5-stage and the (combined EX/
MEM) 4-stage pipeline is already computed in 4.14.2. The clock cycle time is equal
to the latency of the longest-latency stage. Combining EX and MEM stages affects
clock time only if the combined EX/MEM stage becomes the longest-latency stage:

Cycle Time
with 5 Stages

Cycle Time
with 4 Stages Speedup

a. 200ps (IF) 210ps (MEM + 20ps) (9 ´ 200)/(8 ´ 210) = 1.07

b. 200ps (ID, EX, MEM) 220ps (MEM + 20ps) (8 ´ 200)/(7 ´ 220) = 1.04

4.14.5

New ID
Latency

New EX
Latency

New Cycle
Time

Old Cycle Time
Speedup

a. 180ps 140ps 200ps (IF) 200ps (IF) (11 ´ 200)/(10 ´ 200) = 1.10

b. 300ps 190ps 300ps (ID) 200ps (ID, EX, MEM) (10 ´ 200)/(9 ´ 300) = 0.74

4.14.6 The cycle time remains unchanged: a 20ps reduction in EX latency has no
effect on clock cycle time because EX is not the longest-latency stage. The change
does affect execution time because it adds one additional stall cycle to each branch.
Because the clock cycle time does not improve but the number of cycles increases,
the speedup from this change will be below 1 (a slowdown). In 4.14.3 we already
computed the number of cycles when branch is in EX stage. We have:

Cycles with
Branch in EX

Execution Time
(Branch in EX)

Cycles with
Branch in MEM

Execution Time
(Branch in MEM) Speedup

a. 4 + 5 + 1 ´ 2 = 11 11 ´ 200ps = 2200ps 4 + 5 + 1 ´ 3 = 12 12 ´ 200ps = 2400ps 0.92

b. 4 + 4 + 1 ´ 2 = 10 10 ´ 200ps = 2000ps 4 + 4 + 1 ´ 3 = 11 11 ´ 200ps = 2200ps 0.91

Solution 4.15
4.15.1

a. This instruction behaves like a normal load until the end of the MEM stage. After that, it
behaves like an ADD, so we need another stage after MEM to compute the result, and we need
additional wiring to get the value of Rt to this stage.

b. This instruction behaves like a load until the end of the MEM stage. After that, we need another
stage to compare the value against Rt. We also need to add an input to the PC Mux that takes
the value of Rd, and the Mux select signal must now include the result of the new comparison.
We also need an extra read port in Registers because the instruction needs three registers to
be read.

Sol04-9780123747501.indd S22Sol04-9780123747501.indd S22 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S23

4.15.2

a. We need to add a control signal that selects what the new stage does (just pass the value from
memory through, or add the register value to it).

b. We need a control signal similar to the existing “Branch” signal to control whether or not the
new comparison is allowed to affect the PC. We also need to add one bit to the control signal
that selects whether the target address is PC + 4 + Offs or the register value.

4.15.3

a. The addition of a new stage either adds new forwarding paths (from the new stage to EX) or
(if there is no forwarding) makes a stall due to a data hazard one cycle longer. Additionally,
this instruction produces its result only at the end of the new stage, so even with forwarding it
introduces a data hazard that requires a two-cycle stall if the ADDM instruction is immediately
followed by a data-dependent instruction.

b. The addition of a new stage either adds new forwarding paths (from the new stage to EX) or
(if there is no forwarding) makes a stall due to a data hazard one cycle longer. The instruction
itself creates a control hazard that leaves the next PC unknown until the BEQM instruction
leaves the new stage, which is two cycles longer than for a normal BEQ.

4.15.4

a. LW Rd,Offs(Rs)
ADD Rd,Rt,Rd

E.g., ADDM can be used when trying to compute a sum of
array elements.

b. LW Rtmp,Offs(Rs)
BNE Rtmp,Rt,Skip
JR Rd
Skip:

E.g., BEQM can be used when trying to determine if an
array has an element with a specifi c value.

4.15.5 The instruction can be translated into simple MIPS-like micro-operations
(see 4.15.4 for a possible translation). These micro-operations can then be exe-
cuted by the processor with a “normal” pipeline.

4.15.6 We will compute the execution time for every replacement interval. The
old execution time is simply the number of instructions in the replacement interval
(CPI of 1). The new execution time is the number of instructions after we made the
replacement, plus the number of added stall cycles. The new number of instruc-
tions is the number of instructions in the original replacement interval, plus the
new instruction, minus the number of instructions it replaces:

New Execution Time Old Execution Time Speedup

a. 30 − (2 − 1) + 2 = 31 30 0.97

b. 40 − (3 − 1) + 1 = 39 40 1.03

Sol04-9780123747501.indd S23Sol04-9780123747501.indd S23 9/2/11 7:35 PM9/2/11 7:35 PM

S24 Chapter 4 Solutions

Solution 4.16
4.16.1 For every instruction, the IF/ID register keeps the PC + 4 and the instruc-
tion word itself. The ID/EX register keeps all control signals for the EX, MEM, and
WB stages, PC + 4, the two values read from Registers, the sign-extended lower-
most 16 bits of the instruction word, and Rd and Rt fi elds of the instruction word
(even for instructions whose format does not use these fi elds). The EX/MEM reg-
ister keeps control signals for the MEM and WB stages, the PC + 4 + Offset (where
Offset is the sign-extended lowermost 16 bits of the instructions, even for instruc-
tions that have no offset fi eld), the ALU result and the value of its Zero output, the
value that was read from the second register in the ID stage (even for instructions
that never need this value), and the number of the destination register (even for
instructions that need no register writes; for these instructions the number of the
destination register is simply a “random” choice between Rd or Rt). The MEM/WB
register keeps the WB control signals, the value read from memory (or a “random”
value if there was no memory read), the ALU result, and the number of the destina-
tion register.

4.16.2

Need to be Read Actually Read

a. R6, R16 R6, R16

b. R1, R0 R1, R0

4.16.3

EX MEM

a. −100 + R6 Write value to memory

b. R1 OR RO Nothing

4.16.4

Loop

a. 2: LW R2,16(R2)
2: SLT R1,R2,R4
2: BEQ R1,R9,Loop
3: ADD R1,R2,R1
3: LW R2,0(R1)
3: LW R2,16(R2)
3: SLT R1,R2,R4
3: BEQ R1,R9,Loop

WB
EX MEM WB
ID EX MEM WB
IF ID EX MEM WB
 IF ID EX MEM WB
 IF ID *** EX MEM
 IF *** ID ***
 IF ***

Sol04-9780123747501.indd S24Sol04-9780123747501.indd S24 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S25

b. LW R1,0(R1)
LW R1,0(R1)
BEQ R1,R0,Loop
LW R1,0(R1)
AND R1,R1,R2
LW R1,0(R1)
LW R1,0(R1)
BEQ R1,R0,Loop

WB
EX MEM WB
ID *** EX MEM WB
IF *** ID EX MEM WB
 IF ID *** EX MEM WB
 IF *** ID EX MEM
 IF ID ***
 IF ***

4.16.5 In a particular clock cycle, a pipeline stage is not doing useful work if it is
stalled or if the instruction going through that stage is not doing any useful work
there. In the pipeline execution diagram from 4.16.4, a stage is stalled if its name is
not shown for a particular cycle, and stages in which the particular instruction is
not doing useful work are marked in red. Note that a BEQ instruction is doing use-
ful work in the MEM stage, because it is determining the correct value of the next
instruction’s PC in that stage. We have:

Cycles per Loop
Iteration

Cycles in Which All
Stages Do Useful Work

% of Cycles in Which All
Stages

Do Useful Work

a. 7 1 14%

b. 8 2 0%

4.16.6 The address of that fi rst instruction of the third iteration (PC + 4 for the
BEQ from the previous iteration) and the instruction word of the BEQ from the
previous iteration.

Solution 4.17
4.17.1 Of all these instructions, the value produced by this adder is actually used
only by a BEQ instruction when the branch is taken. We have:

a. 18% (60% of 30%)

b. 6% (60% of 10%)

4.17.2 Of these instructions, only ADD needs all three register ports (reads two
registers and write one). BEQ and SW does not write any register, and LW only uses
one register value. We have:

a. 40%

b. 60%

4.17.3 Of these instructions, only LW and SW use the data memory. We have:

a. 30% (25% + 5%)

b. 30% (20% + 10%)

Sol04-9780123747501.indd S25Sol04-9780123747501.indd S25 9/2/11 7:35 PM9/2/11 7:35 PM

S26 Chapter 4 Solutions

4.17.4 The clock cycle time of a single-cycle is the sum of all latencies for the
logic of all fi ve stages. The clock cycle time of a pipelined datapath is the maximum
latency of the fi ve stage logic latencies, plus the latency of a pipeline register that
keeps the results of each stage for the next stage. We have:

Single-Cycle Pipelined Speedup

a. 760ps 215ps 3.53

b. 850ps 215ps 3.95

4.17.5 The latency of the pipelined datapath is unchanged (the maximum stage
latency does not change). The clock cycle time of the single-cycle datapath is the
sum of logic latencies for the four stages (IF, ID, WB, and the combined EX + MEM
stage). We have:

Single-Cycle Pipelined

a. 610ps 215ps

b. 650ps 215ps

4.17.6 The clock cycle time of the two pipelines (5-stage and 4-stage) as explained
for 4.17.5. The number of instructions increases for the 4-stage pipeline, so the
speedup is below 1 (there is a slowdown):

Instructions with 5-Stage Instructions with 4-Stage Speedup

a. 1.00 ´ I 1.00 ´ I + 0.5 ´ (0.25 + 0.05) ´ I = 1.150 ´ I 0.87

b. 1.00 ´ I 1.00 ´ I + 0.5 ´ (0.20 + 0.10) ´ I = 1.150 ´ I 0.87

Solution 4.18
4.18.1 No signals are asserted in IF and ID stages. For the remaining three stages
we have:

EX MEM WB

a. ALUSrc = 1, ALUOp = 00,
RegDst = 0

Branch = 0, MemWrite = 0,
MemRead = 1

MemtoReg = 0, RegWrite = 1

b. ALUSrc = 0, ALUOp = 10,
RegDst = 1

Branch = 0, MemWrite = 0,
MemRead = 0

MemtoReg = 1, RegWrite = 1

4.18.2 One clock cycle.

4.18.3 The PCSrc signal is 0 for this instruction. The reason against generating the
PCSrc signal in the EX stage is that the AND must be done after the ALU computes
its Zero output. If the EX stage is the longest-latency stage and the ALU output is on

Sol04-9780123747501.indd S26Sol04-9780123747501.indd S26 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S27

its critical path, the additional latency of an AND gate would increase the clock cycle
time of the processor. The reason in favor of generating this signal in the EX stage is
that the correct next-PC for a conditional branch can be computed one cycle earlier,
so we can avoid one stall cycle when we have a control hazard.

4.18.4

Control Signal 1 Control Signal 2

a. Generated in ID, used in EX Generated in MEM, used in MEM

b. Generated in ID, used in MEM Generated in ID, used in WB

4.18.5

a. None. PCSRc is only 1 for a taken branch, and ALUsrc is 0 for PC-relative branches.

b. None. Branch is only 1 for conditional branches, and conditional branches do not write
registers.

4.18.6 Signal 2 goes back through the pipeline. It affects execution of instruc-
tions that execute after the one for which the signal is generated, so it is not a time-
travel paradox.

Solution 4.19
4.19.1 Dependences to the 1st next instruction result in 2 stall cycles, and the stall
is also 2 cycles if the dependence is to both the 1st and 2nd next instruction. Depen-
dences to only the 2nd next instruction result in one stall cycle. We have:

CPI Stall Cycles

a. 1 + 0.35 ´ 2 + 0.15 ´ 1 = 1.85 46% (0.85/1.85)

b. 1 + 0.35 ´ 2 + 0.25 ´ 1 = 1.95 49% (0.95/1.95)

4.19.2 With full forwarding, the only RAW data dependences that cause stalls are
those from the MEM stage of one instruction to the 1st next instruction. Even these
dependences cause only one stall cycle, so we have:

CPI Stall Cycles

a. 1 + 0.20 = 1.20 17% (0.20/1.20)

b. 1 + 0.10 = 1.1 13% (0.15/1.15)

4.19.3 With forwarding only from the EX/MEM register, EX to 1st dependences
can be satisfi ed without stalls but any other dependences (even when together with
EX to 1st) incur a one-cycle stall. With forwarding only from the MEM/WB reg-
ister, EX to 2nd dependences incur no stalls. MEM to 1st dependences still incur a

Sol04-9780123747501.indd S27Sol04-9780123747501.indd S27 9/2/11 7:35 PM9/2/11 7:35 PM

S28 Chapter 4 Solutions

 one-cycle stall, and EX to 1st dependences now incur one stall cycle because we
must wait for the instruction to complete the MEM stage to be able to forward
to the next instruction. We compute stall cycles per instructions for each case as
 follows:

EX/MEM MEM/WB Fewer Stall Cycles with

a. 0.2 + 0.05 + 0.1 + 0.1 = 0.45 0.05 + 0.2 + 0.1 = 0.35 MEM/WB

b. 0.1 + 0.15 + 0.1 + 0.05 = 0.4 0.2 + 0.1 + 0.05 = 0.35 MEM/WB

4.19.4 In 4.19.1 and 4.19.2 we have already computed the CPI without forward-
ing and with full forwarding. Now we compute time per instruction by taking into
account the clock cycle time:

Without Forwarding With Forwarding Speedup

a. 1.85 ´ 150ps = 277.5ps 1.20 ´ 150ps = 180ps 1.54

b. 1.95 ´ 300ps = 585ps 1.1 ´ 350ps = 385ps 1.52

4.19.5 We already computed the time per instruction for full forwarding in
4.19.4. Now we compute time per instruction with time-travel forwarding and the
speedup over full forwarding:

With Full Forwarding Time-Travel Forwarding Speedup

a. 1.20 ´ 150ps = 180ps 1 ´ 250ps = 250ps 0.72

b. 1.1 ´ 350ps = 385ps 1 ´ 450ps = 450ps 0.86

4.19.6

EX/MEM MEM/WB Shorter Time per Instruction with

a. 1.45 ´ 150ps = 217.5 1.35 ´ 150ps = 202.5ps MEM/WB

b. 1.4 ´ 330ps = 462 1.35 ´ 320ps = 432ps MEM/WB

Solution 4.20
4.20.1

Instruction Sequence RAW WAR WAW

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

(R2) I1 to I2
(R1) I1, I2 to I3

(R1) I1 to I3

Sol04-9780123747501.indd S28Sol04-9780123747501.indd S28 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S29

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2
(R1) I2 to I3

(R1) I1 to I2
(R2) I2 to I3
(R1) I3 to I4

(R1) I1 to I2
(R1) I2 to I4

4.20.2 Only RAW dependences can become data hazards. With forwarding,
only RAW dependences from a load to the very next instruction become hazards.
Without forwarding, any RAW dependence from an instruction to one of the
 following 3 instructions becomes a hazard:

Instruction Sequence With Forwarding Without Forwarding

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R1) I3 to I4 (R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2 (R1) I1 to I2
(R1) I2 to I3

4.20.3 With forwarding, only RAW dependences from a load to the next two
instructions become hazards because the load produces its data at the end of the
second MEM stage. Without forwarding, any RAW dependence from an instruc-
tion to one of the following 4 instructions becomes a hazard:

Instruction Sequence With Forwarding RAW

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R2) I2 to I4
(R1) I3 to I4

(R1) I1 to I2, I3
(R2) I2 to I4
(R1) I3 to I4

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2 (R1) I1 to I2
(R1) I2 to I3

Sol04-9780123747501.indd S29Sol04-9780123747501.indd S29 9/2/11 7:35 PM9/2/11 7:35 PM

S30 Chapter 4 Solutions

4.20.4

Instruction Sequence RAW

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
I4: OR R3,R1,R2

(R1) I1 to I2 (30 overrides –1)

b. I1: LW R1,0(R1)
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

(R1) I1 to I2 (0 overrides 4)

4.20.5 A register modifi cation becomes “visible” to the EX stage of the following
instructions only two cycles after the instruction that produces the register value
leaves the EX stage. Our forwarding-assuming hazard detection unit only adds a
one-cycle stall if the instruction that immediately follows a load is dependent on
the load. We have:

Instruction Sequence
with Forwarding Stalls

Execution without
Forwarding Values after Execution

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
 Stall
I4: OR R3,R1,R2

R1 = 30 (Stall and after)
R2 = 0 (I4 and after)
R1 = 0 (after I4)

R3 = 30 (after I4)

R0 = 0
R1 = 0
R2 = 0
R3 = 30

b. I1: LW R1,0(R1)
 Stall
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

R1 = 0 (I3 and after)

R1 = 4 (after I4)
R2 = 0
R1 = 0

R0 = 0
R1 = 0
R2 = 0
R3 = 3000

4.20.6

Instruction Sequence
with Forwarding Stalls Correct Execution Sequence with NOPs

a. I1: ADD R1,R2,R1
I2: LW R2,0(R1)
I3: LW R1,4(R1)
 Stall
I4: OR R3,R1,R2

I1: ADD R1,R2,R1
Stall
Stall
I2: LW R2,0(R1)
I3: LW R1,4(R1)
 Stall
 Stall
I4: OR R3,R1,R2

ADD R1,R2,R1
NOP
NOP
LW R2,0(R1)
LW R1,4(R1)
NOP
NOP
OR R3,R1,R2

Sol04-9780123747501.indd S30Sol04-9780123747501.indd S30 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S31

b. I1: LW R1,0(R1)
 Stall
I2: AND R1,R1,R2
I3: LW R2,0(R1)
I4: LW R1,0(R3)

I1: LW R1,0(R1)
 Stall
 Stall
I2: AND R1,R1,R2
 Stall
 Stall
I3: LW R2,0(R1)
I4: LW R1,0(R3)

LW R1,0(R1)
NOP
NOP
AND R1,R1,R2
NOP
NOP
LW R2,0(R1)
LW R1,0(R3)

Solution 4.21
4.21.1

a. ADD R5,R2,R1
NOP
NOP
LW R3,4(R5)
LW R2,0(R2)
NOP
OR R3,R5,R3
NOP
NOP
SW R3,0(R5)

b. LW R2,0(R1)
NOP
NOP
AND R1,R2,R1
LW R3,0(R2)
NOP
LW R1,0(R1)
NOP
NOP
SW R1,0(R2)

4.21.2 We can move up an instruction by swapping its place with another instruc-
tion that has no dependences with it, so we can try to fi ll some NOP slots with such
instructions. We can also use R7 to eliminate WAW or WAR dependences so we can
have more instructions to move up.

Sol04-9780123747501.indd S31Sol04-9780123747501.indd S31 9/2/11 7:35 PM9/2/11 7:35 PM

S32 Chapter 4 Solutions

a. I1: ADD R5,R2,R1
I3: LW R2,0(R2)
NOP
I2: LW R3,4(R5)
NOP
NOP
I4: OR R3,R5,R3
NOP
NOP
I5: SW R3,0(R5)

Moved up to fi ll NOP slot

Had to add another NOP here,
so there is no performance gain

b. I1: LW R2,0(R1)
NOP
NOP
I2: AND R1,R2,R1
I3: LW R3,0(R2)
NOP
I4: LW R1,0(R1)
NOP
NOP
I5: SW R1,0(R2)

No improvement is possible. There is a chain of RAW
dependences from I1 to I2 to I4 to I5, and each step in the
chain has to be separated by two instructions.

4.21.3 With forwarding, the hazard detection unit is still needed because it must
insert a one-cycle stall whenever the load supplies a value to the instruction that
immediately follows that load. Without the hazard detection unit, the instruction
that depends on the immediately preceding load gets the stale value the register had
before the load instruction.

a. Code executes correctly (for both loads, there is no RAW dependence between the load and the
next instruction).

b. I1 gets the value of R2 from before I1, not from I1 as it should. Also, I5 gets the value of R1
from I1, not from I4 as it should.

4.21.4 The outputs of the hazard detection unit are PCWrite, IF/IDWrite, and
ID/EXZero (which controls the Mux after the output of the Control unit). Note
that IF/IDWrite is always equal to PCWrite, and ED/ExZero is always the opposite
of PCWrite. As a result, we will only show the value of PCWrite for each cycle.
The outputs of the forwarding unit are ALUin1 and ALUin2, which control Muxes
which select the fi rst and second input of the ALU. The three possible values for
ALUin1 or ALUin2 are 0 (no forwarding), 1 (forward ALU output from previous
instruction), or 2 (forward data value for second-previous instruction). We have:

Sol04-9780123747501.indd S32Sol04-9780123747501.indd S32 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S33

Instruction Sequence
First Five Cycles

 1 2 3 4 5 Signals

a. ADD R5,R2,R1
LW R3,4(R5)
LW R2,0(R2)
OR R3,R5,R3
SW R3,0(R5)

IF ID EX MEM WB
 IF ID EX MEM
 IF ID EX
 IF ID
 IF

1: PCWrite = 1, ALUin1 = X, ALUin2 = X
2: PCWrite = 1, ALUin1 = X, ALUin2 = X
3: PCWrite = 1, ALUin1 = 0, ALUin2 = 0
4: PCWrite = 1, ALUin1 = 1, ALUin2 = 0
5: PCWrite = 1, ALUin1 = 0, ALUin2 = 0

b. LW R2,0(R1)
AND R1,R2,R1
LW R3,0(R2)
LW R1,0(R1)
SW R1,0(R2)

IF ID EX MEM WB
 IF ID *** EX
 IF *** ID
 IF

1: PCWrite = 1, ALUin1 = X, ALUin2 = X
2: PCWrite = 1, ALUin1 = X, ALUin2 = X
3: PCWrite = 1, ALUin1 = 0, ALUin2 = 0
4: PCWrite = 0, ALUin1 = X, ALUin2 = X
5: PCWrite = 1, ALUin1 = 2, ALUin2 = 0

4.21.5 The instruction that is currently in the ID stage needs to be stalled if it
depends on a value produced by the instruction in the EX or the instruction in the
MEM stage. So we need to check the destination register of these two instructions.
For the instruction in the EX stage, we need to check Rd for R-type instructions
and Rd for loads. For the instruction in the MEM stage, the destination register
is already selected (by the Mux in the EX stage) so we need to check that register
number (this is the bottommost output of the EX/MEM pipeline register). The
additional inputs to the hazard detection unit are register Rd from the ID/EX pipe-
line register and the output number of the output register from the EX/MEM pipe-
line register. The Rt fi eld from the ID/EX register is already an input of the hazard
detection unit in Figure 4.60.

No additional outputs are needed. We can stall the pipeline using the three output
signals that we already have.

4.21.6 As explained for 4.21.5, we only need to specify the value of the PCWrite
signal, because IF/IDWrite is equal to PCWrite and the ID/EXzero signal is its
opposite. We have:

Instruction Sequence
First Five Cycles

 1 2 3 4 5 Signals

a. ADD R5,R2,R1
LW R3,4(R5)
LW R2,0(R2)
OR R3,R5,R3
SW R3,0(R5)

 IF ID EX MEM WB
 IF ID *** ***
 IF *** ***

1: PCWrite = 1
2: PCWrite = 1
3: PCWrite = 1
4: PCWrite = 0
5: PCWrite = 0

b. LW R2,0(R1)
AND R1,R2,R1
LW R3,0(R2)
LW R1,0(R1)
SW R1,0(R2)

 IF ID EX MEM WB
 IF ID *** ***
 IF *** ***

1: PCWrite = 1
2: PCWrite = 1
3: PCWrite = 1
4: PCWrite = 0
5: PCWrite = 0

Sol04-9780123747501.indd S33Sol04-9780123747501.indd S33 9/2/11 7:35 PM9/2/11 7:35 PM

S34 Chapter 4 Solutions

Solution 4.22
4.22 .1

Executed Instructions

Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a. LW R2,0(R2)
BEQ R2,R0,Label (T)
LW R2,0(R2)
BEQ R2,R0,Label (NT)
OR R2,R2,R3
SW R2,0(R5)

IF ID
IF

EX
ID
IF

MEM

WB
EX
ID
IF

MEM
EX
ID

WB
MEB

WB
EX MEM

IF
WB
ID
IF

EX
ID

12

MEB
EX

13

WB
MEB

14

WB

b. LW R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW R3,0(R2)
BEQ R3,R0,Label1 (T)
BEQ R2,R0,Label2 (T)
SW R1,0(R2)

IF ID
IF

EX
ID

MEM

WB
EX MEB

IF
WB
ID
IF

EX
ID
IF

MEB

WB
EX
ID
IF

MEB
EX
ID

WB
MEB
EX

13

WB
MEB

44

WB

4.22.2

Executed Instructions

Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a. LW R2,0(R2)
BEQ R2,R0,Label (T)
OR R2,R2,R3
LW R2,0(R2)
BEQ R2,R0,Label (NT)
OR R2,R2,R3
SW R2,0(R5)

IF ID
IF

EX
ID
IF

MEM

WB
EX
ID
IF

MEB
EX
ID
IF

WB
MEB

WB
EX
ID
IF

MEM
EX
ID

WB
MEM
EX
IF

WB
MEM
ID

WB
EX

13

MEB

14

WB

b. LW R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW R3,0(R2)
BEQ R3,R0,Label1 (T)
ADD R1,R3,R1
BEQ R2,R0,Label2 (T)
LW R3,0(R2)
SW R1,0(R2)

IF ID
IF

EX
ID
IF

MEM

WB
EX
ID

MEM
EX
IF

WB
MEB
ID
IF

WB
EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX

13

WB
MEM

14

WB4

4.22.3

a. Label: LW R2,0(R2)
 BEZ R2,Label ; Taken once, then not taken
 OR R2,R2,R3
 SW R2,0(R5)

b. LW R2,0(R1)
Label1: BEZ R2,Label2 ; Not taken once, then taken
 LW R3,0(R2)
 BEZ R3,Label1 ; Taken
 ADD R1,R3,R1
Label2: SW R1,0(R2)

Sol04-9780123747501.indd S34Sol04-9780123747501.indd S34 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S35

4.22.4 The hazard detection logic must detect situations when the branch
depends on the result of the previous R-type instruction, or on the result of two
previous loads. When the branch uses the values of its register operands in its ID
stage, the R-type instruction’s result is still being generated in the EX stage. Thus
we must stall the processor and repeat the ID stage of the branch in the next cycle.
Similarly, if the branch depends on a load that immediately precedes it, the result
of the load is only generated two cycles after the branch enters the ID stage, so we
must stall the branch for two cycles. Finally, if the branch depends on a load that
is the second-previous instruction, the load is completing its MEM stage when the
branch is in its ID stage, so we must stall the branch for one cycle. In all three cases,
the hazard is a data hazard.

Note that in all three cases we assume that the values of preceding instructions are
forwarded to the ID stage of the branch if possible.

4.22.5 For 4.22.1 we have already shown the pipeline execution diagram for the
case when branches are executed in the EX stage. The following is the pipeline dia-
gram when branches are executed in the ID stage, including new stalls due to data
dependences described for 4.22.4:

Executed Instructions

Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a. LW R2,0(R2)
BEQ R2,R0,Label (T)
LW R2,0(R2)
BEQ R2,R0,Label (NT)
OR R2,R2,R3
SW R2,0(R5)

IF ID
IF

EX

MEM

WB
ID
IF

EX
ID
IF

MEB
EX

WB
MEB

WB
ID
IF

EX
ID
IF

MEB
EX
ID

WB
MEB
EX

13

WB
MEB

14

WB

b. LW R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW R3,0(R2)
BEQ R3,R0,Label1 (T)
BEQ R2,R0,Label2 (T)
SW R1,0(R2)

IF ID
IF

EX

MEM

WB
ID EX

IF
MEM
ID
IF

WB
EX

MEB

WB
ID
IF

EX
ID
IF

MEB
EX
ID

13

WB
MEM
EX

1

WB
MEB WB

Now the speedup can be computed as:

a. 14/14 = 1

b. 14/15 = 0.93

4.22.6 Branch instructions are now executed in the ID stage. If the branch instruc-
tion is using a register value produced by the immediately preceding instruction,
as we described for 4.22.4 the branch must be stalled because the preceding

Sol04-9780123747501.indd S35Sol04-9780123747501.indd S35 9/2/11 7:35 PM9/2/11 7:35 PM

S36 Chapter 4 Solutions

 instruction is in the EX stage when the branch is already using the stale register
values in the ID stage. If the branch in the ID stage depends on an R-type instruc-
tion that is in the MEM stage, we need forwarding to ensure correct execution of
the branch. Similarly, if the branch in the ID stage depends on an R-type of load
instruction in the WB stage, we need forwarding to ensure correct execution of
the branch. Overall, we need another forwarding unit that takes the same inputs
as the one that forwards to the EX stage. The new forwarding unit should control
two Muxes placed right before the branch comparator. Each Mux selects between
the value read from Registers, the ALU output from the EX/MEM pipeline register,
and the data value from the MEM/WB pipeline register. The complexity of the new
forwarding unit is the same as the complexity of the existing one.

Solution 4.23
4.23.1 Each branch that is not correctly predicted by the always-taken predictor
will cause 3 stall cycles, so we have:

Extra CPI

a. 3 ´ (1 − 0.45) ´ 0.25 = 0.41

b. 3 ´ (1 − 0.65) ´ 0.08 = 0.08

4.23.2 Each branch that is not correctly predicted by the always-not-taken pre-
dictor will cause 3 stall cycles, so we have:

Extra CPI

a. 3 ´ (1 − 0.55) ´ 0.25 = 0.34

b. 3 ´ (1 − 0.35) ´ 0.08 = 0.16

4.23.3 Each branch that is not correctly predicted by the 2-bit predictor will
cause 3 stall cycles, so we have:

Extra CPI

a. 3 ´ (1 − 0.85) ´ 0.25 = 0.113

b. 3 ´ (− 0.98) ´ 0.08 = 0.005

4.23.4 Correctly predicted branches had CPI of 1 and now they become ALU
instructions whose CPI is also 1. Incorrectly predicted instructions that are con-
verted also become ALU instructions with a CPI of 1, so we have:

CPI without Conversion CPI with Conversion Speedup from Conversion

a. 1 + 3 × (1 − 0.85) × 0.25 = 1.113 1 + 3 × (1 − 0.85) × 0.25 × 0.5 = 1.056 1.113/1.056 = 1.054

b. 1 + 3 × (1 − 0.98) × 0.08 = 1.005 1 + 3 × (1 − 0.98) × 0.08 × 0.5 = 1.002 1.005/1.002 = 1.003

Sol04-9780123747501.indd S36Sol04-9780123747501.indd S36 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S37

4.23.5 Every converted branch instruction now takes an extra cycle to execute,
so we have:

CPI without
Conversion

Cycles per Original
Instruction with Conversion

Speedup from
Conversion

a. 1.113 1 + (1 + 3 ´ (1 − 0.85)) ´ 0.25 ´ 0.5 = 1.181 1.113/1.181 = 0.94

b. 1.015 1 + (1 + 3 ´ (1 − 0.98)) ´ 0.08 ´ 0.5 = 1.042 1.005/1.042 = 0.96

4.23.6 Let the total number of branch instructions executed in the program
be B. Then we have:

Correctly
Predicted

Correctly Predicted
Non-Loop-Back

Accuracy on
Non-Loop-Back Branches

a. B ´ 0.85 B ´ 0.05 (B ´ 0.05)/(B ´ 0.20) = 0.25 (25%)

b. B ´ 0.98 B ´ 0.18 (B ´ 0.18)/(B ´ 0.20) = 0.90 (90%)

Solution 4.24
4.24.1

Always Taken Always Not-taken

a. 2/4 = 50% 2/4 = 50%

b. 3/5 = 60% 2/5 = 40%

4.24.2

Outcomes
Predictor Value

at Time of Prediction
Correct or
Incorrect Accuracy

a. T, T, NT, NT 0,1,2,1 I,I,I,C 25%

b. T, NT, T, T 0,1,0,1 I,C,I,I 25%

4.24.3 The fi rst few recurrences of this pattern do not have the same accuracy as
the later ones because the predictor is still warming up. To determine the accuracy
in the “steady state,” we must work through the branch predictions until the pre-
dictor values start repeating (i.e., until the predictor has the same value at the start
of the current and the next recurrence of the pattern).

Sol04-9780123747501.indd S37Sol04-9780123747501.indd S37 9/2/11 7:35 PM9/2/11 7:35 PM

S38 Chapter 4 Solutions

Outcomes

Predictor Value
at Time of Prediction

Correct or
Incorrect

(in Steady State)

Accuracy in
Steady State

a. T,T,NT,NT 1st occurrence: 0,1,2,1
2nd occurrence: 0,1,2,1

I,I,I,C 25%

b. T, NT, T, T, NT 1st occurrence: 0,1,0,1,2
2nd occurrence: 1,2,1,2,3
3rd occurrence: 2,3,2,3,3
4th occurrence: 2,3,2,3,3

C,I,C,C,I 60%

4.24.4 The predictor should be an N-bit shift register, where N is the number of
branch outcomes in the target pattern. The shift register should be initialized with
the pattern itself (0 for NT, 1 for T), and the prediction is always the value in the
leftmost bit of the shift register. The register should be shifted after each predicted
branch.

4.24.5 Since the predictor’s output is always the opposite of the actual outcome
of the branch instruction, the accuracy is zero.

4.24.6 The predictor is the same as in 4.24.4, except that it should compare its
prediction to the actual outcome and invert (logical NOT) all the bits in the shift
register if the prediction is incorrect. This predictor still always perfectly predicts
the given pattern. For the opposite pattern, the fi rst prediction will be incorrect,
so the predictor’s state is inverted and after that the predictions are always correct.
Overall, there is no warm-up period for the given pattern, and the warm-up period
for the opposite pattern is only one branch.

Solution 4.25
4.25.1

Instruction 1 Instruction 2

a. Invalid target address (EX) Invalid data address (MEM)

b. Invalid target address (EX) Invalid data address (MEM)

4.25.2 The Mux that selects the next PC must have inputs added to it. Each input
is a constant address of an exception handler. The exception detectors must be
added to the appropriate pipeline stage and the outputs of these detectors must be
used to control the pre-PC Mux, and also to convert to NOPs instructions that are
already in the pipeline behind the exception-triggering instruction.

4.25.3 Instructions are fetched normally until the exception is detected. When the
exception is detected, all instructions that are in the pipeline after the fi rst instruc-
tion must be converted to NOPs. As a result, the second instruction never com-
pletes and does not affect pipeline state. In the cycle that immediately follows the

Sol04-9780123747501.indd S38Sol04-9780123747501.indd S38 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S39

cycle in which the exception is detected, the processor will fetch the fi rst instruction
of the exception handler.

4.25.4

Handler Address

a. 0×1000E230

b. 0×678A0000

The fi rst instruction word from the handler address is fetched in the cycle after the
one in which the original exception is detected. When this instruction is decoded
in the next cycle, the processor detects that the instruction is invalid. This exception
is treated just like a normal exception—it converts the instruction being fetched in
that cycle into an NOP and puts the address of the Invalid Instruction handler into
the PC at the end of the cycle in which the Invalid Instruction exception is detected.

4.25.5 This approach requires us to fetch the address of the handler from mem-
ory. We must add the code of the exception to the address of the exception vector
table, read the handler’s address from memory, and jump to that address. One way
of doing this is to handle it like a special instruction that computes the address in
EX, loads the handler’s address in MEM, and sets the PC in WB.

4.25.6 We need a special instruction that allows us to move a value from the (excep-
tion) Cause register to a general-purpose register. We must fi rst save the general-pur-
pose register (so we can restore it later), load the Cause register into it, add the address
of the vector table to it, use the result as an address for a load that gets the address of
the right exception handler from memory, and fi nally jump to that handler.

Solution 4.26
4.26.1 All exception-related signals are 0 in all stages, except the one in which the
exception is detected. For that stage, we show values of Flush signals for various
stages, and also the value of the signal that controls the Mux that supplies the PC
value.

Stage Signals

a. ID IF.Flush = ID.Flush = 1, PCSel = Exc

b. EX IF.Flush = ID.Flush = EX.Flush = 1, PCSel = Exc

4.26.2 The signals stored in the ID/EX stage are needed to execute the instruc-
tion if there are no exceptions. Figure 4.66 does not show it, but exception condi-
tions from various stages are also supplied as inputs to the Control unit. The signal
that goes directly to EX is EX.Flush and it is based on these exception condition
inputs, not on the opcode of the instruction that is in the ID stage. In particular, the

Sol04-9780123747501.indd S39Sol04-9780123747501.indd S39 9/2/11 7:35 PM9/2/11 7:35 PM

S40 Chapter 4 Solutions

EX.Flush signal becomes 1 when the instruction in the EX stage triggers an excep-
tion and must be prevented from completing.

4.26.3 The disadvantage is that the exception handler begins executing one cycle
later. Also, an exception condition normally checked in MEM cannot be delayed
into WB, because at that time the instruction is updating registers and cannot be
prevented from doing so.

4.26.4 When overfl ow is detected in EX, each exception results in a 3-cycle
delay (IF, ID, and EX are cancelled). By moving overfl ow into MEM, we add one
more cycle to this delay. To compute the speedup, we compute execution time per
100,000 instructions:

Old Clock
 Cycle Time

New Clock
Cycle Time

Old Time per
 100,000 Instructions

New Time per
 100,000

Instructions Speedup

a. 250ps 220ps 250ps × 100,003 220ps × 100,004 1.13635

b. 200ps 175ps 200ps × 100,003 175ps × 100,004 1.14285

4.26.5 Exception control (Flush) signals are not really generated in the EX stage.
They are generated by the Control unit, which is drawn as part of the ID stage, but
we could have a separate “Exception Control” unit to generate Flush signals and
this unit is not really a part of any stage.

4.26.6 Flush signals must be generated one Mux time before the end of the cycle.
However, their generation can only begin after exception conditions are generated.
For example, arithmetic overfl ow is only generated after the ALU operation in EX
is complete, which is usually in the later part of the clock cycle. As a result, the Con-
trol unit actually has very little time to generate these signals, and they can easily be
on the critical path that determines the clock cycle time.

Solution 4.27
4.27.1 When the invalid instruction (I3) is decoded, IF.Flush and ID.Flush sig-
nals are used to convert I3 and I4 into NOPs (marked with *). In the next cycle,
in IF we fetch the fi rst instruction of the exception handler, in ID we have an NOP
(instead of I4, marked), in EX we have an NOP (instead of I3), and I1 and I2 still
continue through the pipeline normally:

Branch and Delay Slot Pipeline

a. I1: BEQ R5,R4, Label
I2: SLT R5,R15, R4
I3: Invalid
I4: Something
I5: Handler

IF ID EX MEM WB
 IF ID EX MEM
 IF ID *EX
 IF *ID
 IF

Sol04-9780123747501.indd S40Sol04-9780123747501.indd S40 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S41

b. I1: BEQ R1, R0,Label
I2: LW R1, 0(R1)
I3: Invalid
I4: Something
I5: Handler

IF ID EX MEM WB
 IF ID EX MEM
 IF ID *EX
 IF *ID
 IF

4.27.2 When I2 is in the MEM stage, it triggers an exception condition that
results in converting I2 and I5 into NOPs (I3 and I4 are already NOPs by then). In
the next cycle, we fetch I6, which is the fi rst instruction of the exception handler for
the exception triggered by I2.

Branch and Delay Slot Branch and Delay Slot

a. I1: BEQ R5, R4, Label
I2: SLT R5, R15, R4
I3: Invalid
I4: Something
I5: Handler 1
I6: Handler 2

IF ID EX MEM WB
 IF ID EX MEM *WB
 IF ID *EX *ME
 IF *ID *EX
 IF *ID
 IF

b. I1: BEQ R1, R0, Label
I2: LW R1, 0(R1)
I3: Invalid
I4: Something
I5: Handler 1
I6: Handler 2

IF ID EX MEM WB
 IF ID EX MEM *WB
 IF ID *EX *ME
 IF *ID *EX
 IF *ID
 IF

4.27.3 The EPC is the PC + 4 of the delay-slot instruction. As described in
 Section 4.9, the exception handler subtracts 4 from the EPC, so it gets the address
of the instruction that generated the exception (I2, the delay-slot instruction). If
the exception handler decides to resume execution of the application, it will jump
to the I2. Unfortunately, this causes the program to continue as if the branch was
not taken, even if it was taken.

4.27.4 The processor cancels the store instruction and other instructions (from
the “Invalid instruction” exception handler) fetched after it, and then begins fetch-
ing instructions from the invalid data address handler. A major problem here
is that the new exception sets the EPC to the instruction address in the “Invalid
instruction” handler, overwriting the EPC value that was already there (address for
continuing the program). If the invalid data address handler repairs the problem
and attempts to continue the program, the “Invalid instruction” handler will be
executed. However, if it manages to repair the problem and wants to continue the
program, the EPC is incorrect (it was overwritten before it could be saved). This
is the reason why exception handlers must be written carefully to avoid triggering
exceptions themselves, at least until they have safely saved the EPC.

4.27.5 Not for store instructions. If we check for the address overfl ow in MEM,
the store is already writing data to memory in that cycle and we can no longer
“cancel” it. As a result, when the exception handler is called the memory is already

Sol04-9780123747501.indd S41Sol04-9780123747501.indd S41 9/2/11 7:35 PM9/2/11 7:35 PM

S42 Chapter 4 Solutions

changed by the store instruction, and the handler cannot observe the state of the
machine that existed before the store instruction.

4.27.6 We must add two comparators to the EX stage, one that compares the ALU
result to WADDR, and another that compares the data value from Rt to WVAL. If
one of these comparators detects equality and the instruction is a store, this trig-
gers a “Watchpoint” exception. As discussed for 4.27.5, we cannot delay the com-
parisons until the MEM stage because at that time the store is already done and we
need to stop the application at the point before the store happens.

Solution 4.28
4.28.1

a. ADD R2, R0, R0
Again: BEQ R2, R8, End
 ADD R3, R2, R9
 LW R4, 0(R3)
 SW R4, 1(R3)
 ADDI R2, R2, 2
 BEQ R0, R0, Again
End:

b. ADD R5, R0, R0
Again: BEQ R5, R6, End
 ADD R10, R5, R1
 LW R11, 0(R10)
 LW R10, 1(R10)
 SUB R10, R11, R10
 ADD R11, R5, R2
 SW R10, 0(R11)
 ADDI R5, R5, 2
 BEW R0, R0, Again
End:

4.28.2

Instructions Pipeline

a. ADD R2, R0, R0
BEQ R2, R8, End
ADD R3, R2, R9
LW R4, 0(R3)
SW R4, 1(R3)
ADDI R2, R2, 2
BEQ R0, R0, Again
BEQ R2, R8, End
ADD R3, R2, R9
LW R4, 0(R3)
SW R4, 1(R3)
ADDI R2, R2, 2
BEQ R0, R0, Again
BEQ R2, R8, End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB

Sol04-9780123747501.indd S42Sol04-9780123747501.indd S42 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S43

b. ADD R5, R0, R0
BEQ R5, R6, End
ADD R10, R5, R1
LW R11, 0(R10)
LW R10, 1(R10)
SUB R10, R11, R10
ADD R11, R5, R2
SW R10, 0(R11)
ADDI R5, R5, 2
BEW R0, R0, Again
BEQ R5, R6, End
ADD R10, R5, R1
LW R11, 0(R10)
LW R10, 1(R10)
SUB R10, R11, R10
ADD R11, R5, R2
SW R10, 0(R11)
ADDI R5, R5, 2
BEW R0, R0, Again
BEQ R5, R6, End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB

4.28.3 The only way to execute two instructions fully in parallel is for a load/
store to execute together with another instruction. To achieve this, around each
load/store instruction we will try to put non-load/store instructions that have no
dependences with the load/store.

a. ADD R2, R0, R0
Again: ADD R3, R2, R9
 BEQ R2, R8, End
 LW R4, 0(R3)
 ADDI R2, R2, 2
 SW R4, 1(R3)
 BEQ R0, R0, Again
End:

Note that we are now computing a + i before we check
whether we should continue the loop. This is OK because
we are allowed to “trash” R3. If we exit the loop one extra
instruction is executed, but if we stay in the loop we allow
both of the memory instructions to execute in parallel with
other instructions.

b. ADD R5, R0, R0
Again: ADD R10, R5, R1
 BEQ R5, R6, End
 LW R11, 0(R10)
 ADD R12, R5, R2
 LW R10, 1(R10)
 ADDI R5, R5, 2
 SUB R10, R11, R10
 SW R10,0(R12)
 BEQ R0, R0, Again
End:

Note that we are now computing a + i before we check
whether we should continue the loop. This is OK because
we are allowed to “trash” R10. If we exit the loop one extra
instruction is executed, but if we stay in the loop we allow
both of the memory instructions to execute in parallel with
other instructions.

Sol04-9780123747501.indd S43Sol04-9780123747501.indd S43 9/2/11 7:35 PM9/2/11 7:35 PM

S44 Chapter 4 Solutions

4.28.4

Instructions Pipeline

a. ADD R2, R0, R0
ADD R3, R2, R9
BEQ R2, R8, End
LW R4, 0(R3)
ADDI R2, R2, 2
SW R4, 1(R3)
BEQ R0, R0,Again
ADD R3, R2, R9
BEQ R2, R8, End
LW R4, 0(R3)
ADDI R2, R2, 2
SW R4, 1(R3)
BEQ R0, R0, Again
ADD R3, R2, R9
BEQ R2, R8, End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB

b. ADD R5, R0, R0
ADD R10 ,R5, R1
BEQ R5, R6, End
LW R11, 0(R10)
ADD R12, R5, R2
LW R10, 1(R10)
ADDI R5, R5, 2
SUB R10, R11, R10
SW R10, 0(R12)
BEQ R0, R0, Again
ADD R10, R5, R1
BEQ R5, R6, End
LW R11, 0(R10)
ADD R12, R5, R2
LW R10, 1(R10)
ADDI R5, R5, 2
SUB R10, R11, R10
SW R10, 0(R12)
BEQ R0, R0, Again
ADD R10, R5, R1
BEQ R5, R6, End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB

4.28.5

CPI for 1-Issue CPI for 2-Issue Speedup

a. 1 (no data hazards) 0.83 (5 cycles for 6 instructions). In every iteration SW can
execute in parallel with the next instruction.

1.20

b. 1.11 (10 cycles per 9 instructions). There
is 1 stall cycle in each iteration due to a
data hazard between the second LW and
the next instruction (SUB).

1.06 (19 cycles per 18 instructions). Neither of the two LW
instructions can execute in parallel with another instruction,
and SUB stalls because it depends on the second LW. The SW
instruction executes in parallel with ADDI in even-numbered
iterations.

1.05

Sol04-9780123747501.indd S44Sol04-9780123747501.indd S44 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S45

4.28.6

CPI for 1-Issue CPI for 2-Issue Speedup

a. 1 0.67 (4 cycles for 6 instructions). In every
iteration ADD and LW cannot execute in the
same cycle because of a data dependence.
The rest of the instructions can execute in
pairs.

1.49

b. 1.11 0.83 (15 cycles per 18 instructions). In all
iterations, SUB is stalled because it depends
on the second LW. The only instructions
that execute in odd-numbered iterations as
a pair are ADDI and BEQ. In even-numbered
iterations, only the two LW instructions cannot
execute as a pair.

1.34

Solution 4.29
4.29.1 Note that all register read ports are active in every cycle, so 4 register reads
(2 instructions with 2 reads each) happen in every cycle. We determine the number
of cycles it takes to execute an iteration of the loop and the number of useful reads,
then divide the two. The number of useful register reads for an instruction is the
number of source register parameters minus the number of registers that are for-
warded from prior instructions. We assume that register writes happen in the fi rst
half of the cycle and the register reads happen in the second half.

Loop Pipeline Stages Useful Reads % Useful

a. ADD R2, R2,R3
BEQ R2, zero, Loop
ADDI R1, R1, 4
LW R2, 0(R1)
LW R3, 16(R1)
ADD R2, R2, R1
ADD R2, R2, R3
BEQ R2, zero, Loop

ID EX ME WB
ID ** EX ME WB
IF ** ID EX ME WB
IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB

1
0 (R1 fw)
0 (R1 fw)
1 (R1, R2 fw)
0 (R2, R3 fw)
1 (R2 fw)

15%

(3/(5×4))

b. AND R1, R1, R2
LW R2, 0(R2)
BEQ R1, zero, Loop
LW R1, 0(R1)
AND R1, R1, R2
LW R2, 0(R2)
BEQ R1, zero, Loop

EX ME WB
ID EX ME WB
ID EX ME WB
IF ID EX ME WB
IF ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB

0 (R1 fw)
0 (R1, R2 fw)
1
1 (R1 fw)

12.5%

(2/(4×4))

Sol04-9780123747501.indd S45Sol04-9780123747501.indd S45 9/2/11 7:35 PM9/2/11 7:35 PM

S46 Chapter 4 Solutions

4.29.2 The utilization of read ports is lower with a wider-issue processor:

Loop Pipeline Stages Useful Reads % Useful

a. ADD R2, R2, R3
BEQ R2, zero, Loop
ADDI R1, R1, 4
LW R2, 0(R1)
LW R3, 16(R1)
ADD R2, R2, R1
ADD R2, R2, R3
BEQ R2, zero, Loop

ID ** ** EX ME WB
ID ** ** ** EX ME WB
IF ** ** ** ID EX ME WB
IF ** ** ** ID ** EX ME WB
IF ** ** ** ID ** EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** ** EX ME WB
 IF ** ID ** ** ** EX ME WB

1
0 (R1 fw)
0 (R1 fw)
0 (R1,R2 fw)
0 (R2,R3 fw)
1 (R2 fw)

5.5%

(2/(6 ´ 6))

b. AND R1, R1, R2
LW R2, 0(R2)
BEQ R1, zero, Loop
LW R1, 0(R1)
AND R1, R1, R2
LW R2, 0(R2)
BEQ R1, zero, Loop
LW R1, 0(R1)
AND R1, R1, R2
LW R2, 0(R2)
BEQ R1, zero, Loop
LW R1, 0(R1)
AND R1, R1, R2
LW R2, 0(R2)
BEQ R1, zero, Loop

ID ** EX ME WB
ID ** EX ME WB
ID ** ** EX ME WB
IF ** ** ID EX ME WB
IF ** ** ID ** ** EX ME WB
IF ** ** ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB
 IF ID ** EX ME WB
 IF ID ** EX ME WB
 IF ID ** ** EX ME WB

0 (R1 fw)
0 (R1,R2 fw)
0 (R2 fw)
1 (R1 fw)
0 (R1 fw)
0 (R1,R2 fw)
1
1 (R1 fw)
0 (R1 fw)
0 (R1,R2 fw)
0 (R2 fw)
1 (R1 fw)

6.7%

(4/(10 ´ 6))

4.29.3

2 Ports Used 3 Ports Used

a. 1 cycle out of 6 (16.7%) Never (0%)

b. 3 cycles out of 10 (30%) 1 cycle out of 10 (10%)

4.29.4

Unrolled and Scheduled Loop Comment

a. NOP
Loop: LW R2, 8(R1)
 LW R3, 24(R1)
 ADDI R1, R1, 8
 ADD R2, R2, R1
 ADD R2, R2, R3
 BEQ R2, zero, Loop

We are able to complete one iteration of the
unrolled loop every 4 cycles. Both loads and adds
that come from the fi rst original iteration of the
unrolled loop can be eliminated (they are only
used to compute R2 for BEQ, which is removed).
We combine both ADDI instructions and then
schedule the unrolled loop to execute in four
cycles per (unrolled) iteration, which is optimal.
Note the NOP before the loop, which is needed to
ensure that BEQ always executes together with
the fi rst LW of the next iteration.

Sol04-9780123747501.indd S46Sol04-9780123747501.indd S46 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S47

b. NOP
Loop: LW R1, 0(R1)
 LW R10, 0(R2)
 NOP
 AND R1, R1, R2
 LW R1, 0(R1)
 AND R1, R1, R10
 LW R2, 0(R10)
 BEQ R1, zero, Loop

We are able to execute one iteration of the
unrolled loop in 6 cycles, which is optimal. Note
the NOP before the loop, which is needed to
ensure that BEQ always executes together with
the fi rst LW of the next iteration.

4.29.5 We determine the number of cycles needed to execute two iterations of
the original loop (one iteration of the unrolled loop). Note that we cannot use CPI
in our speedup computation because the two versions of the loop do not execute
the same instructions.

Original Loop Unrolled Loop Speedup

a. 5 ´ 2 = 10 4 2.5

b. 4 ´ 2 = 8 6 1.3

4.29.6 On a pipelined processor the number of cycles per iteration is easily com-
puted by adding together the number of instructions and the number of stalls.
The only stalls occur when an LW instruction is followed immediately with a RAW-
dependent instruction, so we have:

Original Loop Unrolled Loop Speedup

a. 6 ´ 2 = 12 6 2

b. (4 + 1) ´ 2 = 10 9 1.1

Solution 4.30
4.30. 1 Let p be the probability of having a mispredicted branch. Whenever we
have an incorrectly predicted BEQ as the fi rst of the two instructions in a cycle (the
probability of this event is p), we waste one issue slot (half a cycle) and another two
entire cycles. If the fi rst instruction in a cycle is not a mispredicted BEQ but the sec-
ond one is (the probability of this is (1 − p) × p), we waste two cycles. Without these
mispredictions, we would be able to execute two instructions per cycle. We have:

CPI

a. 0.5 + 0.05 × 2.5 + 0.95 × 0.05 × 2 = 0.720

b. 0.5 + 0.01 × 2.5 + 0.99 × 0.01 × 2 = 0.545

Sol04-9780123747501.indd S47Sol04-9780123747501.indd S47 9/2/11 7:35 PM9/2/11 7:35 PM

S48 Chapter 4 Solutions

4.30.2 Inability to predict a branch results in the same penalty as a mispredicted
branch. We compute the CPI like in 4.30.1, but this time we also have a 2-cycle
penalty if we have a correctly predicted branch in the fi rst issue slot and another
branch that would be correctly predicted in the second slot. We have:

CPI with 2 Predicted
Branches per Cycle CPI with 1 Predicted Branch per Cycle Speedup

a. 0.720 0.5 + 0.05 ´ 2.5 + 0.95 ´ 0.05 ´ 2 + 0.20 ´ 0.20 ´ 2 = 0.800 1.11

b. 0.545 0.5 + 0.01 ´ 2.5 + 0.99 ´ 0.01 ´ 2 + 0.04 ´ 0.04 ´ 2 = 0.548 1.01

4.30.3 We have a one-cycle penalty whenever we have a cycle with two instructions
that both need a register write. Such instructions are ALU and LW instructions.
Note that BEQ does not write registers, so stalls due to register writes and due to
branch mispredictions are independent events. We have:

CPI with 2 Register
Writes per Cycle CPI with 1 Register Write per Cycle Speedup

a. 0.720 0.5 + 0.05 ´ 2.5 + 0.95 ´ 0.05 ´ 2 + 0.65 ´ 0.65 ´ 1 = 1.143 1.59

b. 0.545 0.5 + 0.01 ´ 2.5 + 0.99 ´ 0.01 ´ 2 + 0.75 ´ 0.75 ´ 1 = 1.107 2.03

4.30.4 We have already computed the CPI with the given branch prediction accu-
racy, and we know that the CPI with ideal branch prediction is 0.5, so:

CPI with Given
Branch Prediction

CPI with Perfect
Branch Prediction Speedup

a. 0.720 0.5 1.44

b. 0.545 0.5 1.09

4.30.5 The CPI with perfect branch prediction is now 0.25 (four instructions
per cycle). A branch misprediction in the fi rst issue slot of a cycle results in 2.75
penalty cycles (remaining issue slots in the same cycle plus 2 entire cycles), in the
second issue slot 2.5 penalty cycles, in the third slot 2.25 penalty cycles, and in the
last (fourth) slot 2 penalty cycles. We have:

CPI with Given Branch Prediction
CPI with Perfect

Branch Prediction Speedup

a. 0.25 + 0.05 × 2.75 + 0.95 ´ 0.05 × 2.5 + 0.952 ´ 0.05 × 2.25 + 0.953 × 0.05 × 2 = 0.694 0.25 2.77

b. 0.25 + 0.01 × 2.75 + 0.99 ´ 0.01 × 2.5 + 0.992 ´ 0.01 × 2.25 + 0.993 × 0.01 × 2 = 0.344 0.25 1.37

Sol04-9780123747501.indd S48Sol04-9780123747501.indd S48 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S49

The speedup from improved branch prediction is much larger in a 4-issue
processor than in a 2-issue processor. In general, processors that issue more
instructions per cycle gain more from improved branch prediction because each
branch misprediction costs them more instruction execution opportunities (e.g.,
4 per cycle in 4-issue vs. 2 per cycle in 2-issue).

4.30.6 With this pipeline, the penalty for a mispredicted branch is 20 cycles plus
the fraction of a cycle due to discarding instructions that follow the branch in the
same cycle. We have:

CPI with Given Branch Prediction
CPI with Perfect

Branch Prediction Speedup

a. 0.25 + 0.05 ´ 20.75 + 0.95 ´ 0.05 × 20.5 + 0.952 ´ 0.05 × 20.25 + 0.953 ´ 0.05 × 20 = 4.032 0.25 16.13

b. 0.25 + 0.01 ´ 20.75 + 0.99 ´ 0.01 × 20.5 + 0.992 ´ 0.01 × 20.25 + 0.993 ´ 0.01 × 20 = 1.053 0.25 4.21

We observe huge speedups when branch prediction is improved in a processor with
a very deep pipeline. In general, processors with deeper pipelines benefi t more from
improved branch prediction because these processors cancel more instructions
(e.g., 20 stages worth of instructions in a 50-stage pipeline vs. 2 stages worth of
instructions in a 5-stage pipeline) on each misprediction.

Solution 4.31
4.31.1 The number of cycles is equal to the number of instructions (one instruc-
tion is executed per cycle) plus one additional cycle for each data hazard which
occurs when an LW instruction is immediately followed by a dependent instruc-
tion. We have:

CPI

a. (12 + 3)/12 = 1.25

b. (9 + 2)/9 = 1.22

4.31.2 The number of cycles is equal to the number of instructions (one instruc-
tion is executed per cycle), plus the stall cycles due to data hazards. Data hazards
occur when the memory address used by the instruction depends on the result of
a previous instruction (EXE to ARD, 2 stall cycles) or the instruction after that
(1 stall cycle), or when an instruction writes a value to memory and one of the next

Sol04-9780123747501.indd S49Sol04-9780123747501.indd S49 9/2/11 7:35 PM9/2/11 7:35 PM

S50 Chapter 4 Solutions

two instructions reads a value from the same address (2 or 1 stall cycles). All other
data dependences can use forwarding to avoid stalls. We have:

Instructions Stall Cycles CPI

a. I1: mov -4(esp), eax
I2: mov -4(esp), edx
I3: add (edi,eax,4),edx
I4: mov edx, -4(esp)
I5: mov -4(esp),eax
I6: cmp 0, (edi,eax,4)
I7: jne Label

1 (eax from I1)

 2 (read from I4)
2 (eax from I6)

(7 + 5)/7 = 1.71

b. I1: add 4, edx
I2: mov (edx), eax
I3: add 4(edx), eax
I4: add 8(edx), eax
I5: mov eax, -4(edx)
I6: test edx, edx
I7: jl Label

2 (edx from I2)
(7 + 2)/7 = 1.29

4.31.3 The number of instructions here is that from the x86 code, but the num-
ber of cycles per iteration is that from the MIPS code (we fetch x86 instructions,
but after instructions are decoded we end up executing the MIPS version of the
loop):

CPI

a. 15/7 = 2.14

b. 11/7 = 1.57

4.31.4 Dynamic scheduling allows us to execute an independent “future” instruc-
tion when the one we should be executing stalls. We have:

Instructions Reordering CPI

a. I1: lw r2,-4(sp)
I2: lw r3,-4(sp)
I3: sll r2,r2,2
I4: add r2,r2,r4
I5: lw r2,0(r2)
I6: add r3,r3,r2
I7: sw r3,-4(sp)
I8: lw r2,-4(sp)
I9: sll r2,r2,2
I10: add r2,r2,r4
I11: lw r2,0(r2)
I12: bne r2,zero,Label

I6 stalls, and all subsequent instructions have dependences
so this stall remains.

I9 stalls, but we can do I2 from the next iteration instead.
However, this makes I3 stall and we can’t eliminate that stall.

I12 stalls and all subsequent instructions that remain have
dependences so this stall remains.

(12 + 3)/12 = 1.25

Sol04-9780123747501.indd S50Sol04-9780123747501.indd S50 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S51

b. I1: addi r4,r4,4
I2: lw r3,0(r4)
I3: lw r2,4(r4)
I4: add r2,r2,r3
I5: lw r3,8(r4)
I6: add r2,r2,r3
I7: sw r2,-4(r4)
I8: slt r1,r4,zero
I9: bne r1,zero,Label

I4 stalls, but we can do I8 instead.

I6 stalls, and all remaining subsequent instructions have
dependences so this stall remains.

(9 + 1)/9 = 1.11

4.31.5 We use t0, t1, etc. as names for new registers in our renaming. We have:

Instructions Stalls CPI

a. I1: lw t1,-4(sp)
I2: lw t2,-4(sp)
I3: sll t3,t1,2
I4: add t4,t3,r4
I5: lw t5,0(t4)
I6: add r3,t2,t5
I7: sw r3,-4(sp)
I8: lw t6,-4(sp)
I9: sll t7,t6,2
I10: add t8,t7,r4
I11: lw r2,0(t8)
I12: bne r2,zero,Label

I6 stalls, and all subsequent instructions have dependences.
Note that I8 reads what I7 wrote to memory, so these
instructions are still dependent.

I9 stalls, but we can do I1 from the next iteration instead.

I12 stalls, but we can do I2 from the next iteration instead.

(12 + 1)/12 = 1.08

b. I1: addi r4,r4,4
I2: lw t1,0(r4)
I3: lw t2,4(r4)
I4: add t3,t2,t1
I5: lw r3,8(r4)
I6: add r2,t3,r3
I7: sw r2,-4(r4)
I8: slt r1,r4,zero
I9: bne r1,zero,Label

This loop can now execute without stalls. I4 would stall, but
we can do I5 instead. After I5 we execute I4, so I6 no longer
stalls.

9/9 = 1

4.31.6 Note that now every time we execute an instruction it can be renamed differently. We have:

Instructions Reordering CPI

a. I1: lw t1,-4(sp)
I2: lw t2,-4(sp)
I3: sll t3,t1,2
I4: add t4,t3,r4
I5: lw t5,0(t4)
I6: add t6,t2,t5
I7: sw t6,-4(sp)
I8: lw t7,-4(sp)
I9: sll t8,t7,2
I10: add t9,t8,r4
I11: lw t10,0(t9)
I12: bne t10,zero,Label

I6 stalls, and all subsequent instructions have
dependences. Note that I8 reads what I7 wrote to
memory, so these instructions are still dependent.

I9 would stall, but we can do I1 from the next iteration
instead.

I12 would stall, but we can do I2 from the next iteration
instead.

(12 + 1)/12 = 1.08

Sol04-9780123747501.indd S51Sol04-9780123747501.indd S51 9/2/11 7:35 PM9/2/11 7:35 PM

S52 Chapter 4 Solutions

Solution 4.32
4.32.1 The expected number of mispredictions per instruction is the probability
that a given instruction is a branch that is mispredicted. The number of instruc-
tions between mispredictions is one divided by the number of mispredictions per
instruction. We get:

Mispredictions per Instruction Instructions between Mispredictions

a. 0.25 ´ (1 − 0.95) 80

b. 0.25 ´ (1 − 0.99) 400

4.32.2 The number of in-progress instructions is equal to the pipeline depth
times the issue width. The number of in-progress branches can then be easily com-
puted because we know what percentage of all instructions are branches. We have:

In-progress Branches

a. 15 ´ 4 ´ 0.25 = 15

b. 30 ´ 4 ´ 0.25 = 30

4.32.3 We keep fetching from the wrong path until the branch outcome is known,
fetching 4 instructions per cycle. If the branch outcome is known in stage N of
the pipeline, all instructions are from the wrong path in N – 1 stages. In the Nth
stage, all instructions after the branch are from the wrong path. Assuming that the
branch is just as likely to be the 1st, 2nd, 3rd, or 4th instruction fetched in its cycle, we
have on average 1.5 instructions from the wrong path in the Nth stage (3 if branch
is 1st, 2 if branch is 2nd, 1 if branch is 3rd, and 0 if branch is last). We have:

Wrong-path Instructions

a. (12 − 1) ´ 4 ´ 1.5 = 45.5

b. (20 − 1) ´ 4 ´ 1.5 = 77.5

b. I1: addi t1,t1,4
I2: lw t2,0(t1)
I3: lw t3,4(t1)
I4: add t4,t3,t2
I5: lw t5,8(t1)
I6: add t6,t4,t5
I7: sw t6,-4(t1)
I8: slt t7,t1,zero
I9: bne t7,zero,Label

No stalls remain. I4 would stall, but we can do I5
instead. After I5 we execute I4, so I6 no longer stalls.

In next iteration uses of r4 renamed to t3.

9/9 = 1

Sol04-9780123747501.indd S52Sol04-9780123747501.indd S52 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S53

4.32.4 We can compute the CPI for each processor, then compute the speedup.
To compute the CPI, we note that we have determined the number of useful
instructions between branch mispredictions (for 4.32.1) and the number of mis-
fetched instructions per branch misprediction (for 4.32.3), and we know how many
instructions in total are fetched per cycle (4 or 8). From that we can determine the
number of cycles between branch mispredictions, and then the CPI (cycles per use-
ful instruction). We have:

4-Issue 8-Issue

SpeedupCycles CPI Mis-Fetched Cycles CPI

a. (45.5 + 80)/4 = 31.4 31.4/80 = 0.392 (12 − 1) ´ 8 ´ 3.5 = 91.5 (91.5 + 80)/8 = 21.4 21.4/80 = 0.268 1.46

b. (77.5 + 400)/4 = 119.4 119.4/400 = 0.298 (20 − 1) ´ 8 ´ 3.5 = 155.5 (155.5 + 400)/8 = 69.4 69.4/400 = 0.174 1.72

4.32.5 When branches are executed one cycle earlier, there is one less cycle needed
to execute instructions between two branch mispredictions. We have:

“Normal” CPI “Improved” CPI Speedup

a. 31.4/80 = 0.392 30.4/80 = 0.380 1.033

b. 119.4/400 = 0.298 118.4/400 = 0.296 1.008

4.32.6

“Normal” CPI “Improved” CPI Speedup

a. 21.4/80 = 0.268 20.4/80 = 0.255 1.049

b. 69.4/400 = 0.174 68.4/400 = 0.171 1.015

Speedups from this improvement are larger for the 8-issue processor than with the
4-issue processor. This is because the 8-issue processor needs fewer cycles to execute
the same number of instructions, so the same 1-cycle improvement represents a
large relative improvement (speedup).

Solution 4.33
4.33.1 We need two register reads for each instruction issued per cycle:

Read Ports

a. 2 ´ 2 = 4

b. 8 ´ 2 = 16

4.33.2 We compute the time-per-instruction as CPI times the clock cycle time.
For the 1-issue 5-stage processor we have a CPI of 1 and a clock cycle time of T.

Sol04-9780123747501.indd S53Sol04-9780123747501.indd S53 9/2/11 7:35 PM9/2/11 7:35 PM

S54 Chapter 4 Solutions

For an N-issue K-stage processor we have a CPI of 1/N and a clock cycle of T*5/K.
Overall, we get a speedup of:

Speedup

a. 15/5 ´ 2 = 6

b. 30/5 ´ 8 = 48

4.33.3 We are unable to benefi t from a wider issue width (CPI is 1), so we have:

Speedup

a. 15/5 = 3

b. 30/5 = 6

4.33.4 We fi rst compute the number of instructions executed between mispre-
dicted branches. Then we compute the number of cycles needed to execute these
instructions if there were no misprediction stalls, and the number of stall cycles due
to a misprediction. Note that the number of cycles spent on a misprediction is the
number of entire cycles (one less than the stage in which branches are executed) and
a fraction of the cycle in which the mispredicted branch instruction is. The fraction
of a cycle is determined by averaging over all possibilities. In an N-issue processor,
we can have the branch as the fi rst instruction of the cycle, in which case we waste
(N − 1) Nths of a cycle, or the branch can be the second instruction in the cycle, in
which case we waste (N − 2) Nths of a cycle, …, or the branch can be the last instruc-
tion in the cycle, in which case none of that cycle is wasted. With all of this data we
can compute what percentage of all cycles are misprediction stall cycles:

Instructions between
Branch Mispredictions

Cycles between
Branch Mispredictions

Stall
Cycles % Stalls

a. 1/(0.10 ´ 0.04) = 250 250/2 = 125 8.3 8/(125 + 8.3) = 6%

b. 1/(0.10 ´ 0.02) = 500 500/8 = 62.5 4.4 4/(62.5 + 4.4) = 6%

4.33.5 We have already computed the number of stall cycles due to a branch
misprediction, and we know how to compute the number of non-stall cycles
between mispredictions (this is where the misprediction rate has an effect).
We have:

Stall Cycles between
Mispredictions

Need # of Instructions
between Mispredictions

Allowed Branch
Misprediction Rate

a. 8.3 8.3 ´ 2/0.05 = 330 1/(330 ´ 0.10) = 3.03%

b. 4.4 4.4 ´ 8/0.01 = 3550 1/(3550 ´ 0.10) = 0.28%

The needed accuracy is 100% minus the allowed misprediction rate.

Sol04-9780123747501.indd S54Sol04-9780123747501.indd S54 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S55

4.33.6 This problem is very similar to 4.33.5, except that we are aiming to have as
many stall cycles as we have non-stall cycles. We get:

Stall Cycles between
Mispredictions

Need # of Instructions
between Mispredictions

Allowed Branch
Misprediction Rate

a. 8.3 8.3 ´ 2 = 16.5 1/(16.5 ´ 0.10) = 60.1%

b. 4.4 4.4 ´ 8 = 35.5 1/(35.5 ´ 0.10) = 28.2%

The needed accuracy is 100% minus the allowed misprediction rate.

Solution 4.34
4.34.1 We need an IF pipeline stage to fetch the instruction. Since we will only
execute one kind of instruction, we do not need to decode the instruction but we
still need to read registers. As a result, we will need an ID pipeline stage although
it would be misnamed. After that, we have an EXE stage, but this stage is sim-
pler because we know exactly which operation should be executed so there is no
need for an ALU that supports different operations. Also, we need no Mux to select
which values to use in the operation because we know exactly which value it will
be. We have:

a. In the ID stage we read two registers and we do not need a sign-extend unit. In the EXE stage
we need an “And” unit whose inputs are the two register values read in the ID stage. After the
EXE stage we have a WB stage which writes the result from the And unit into Rd (again, no Mux).
Note that there is no MEM stage, so this is a 4-stage pipeline. Also note that the PC is always
incremented by 4, so we do not need the other Add and Mux units that compute the new PC for
branches and jumps.

b. We read two registers in the ID stage, and we also need the sign-extend unit for the Offs fi eld
in the instruction word. In the EXE stage we need an Add unit whose inputs are the Rs register
value and the sign-extended offset from the ID stage. After the EXE stage we use the output of
the Add unit as a memory address in the MEM stage, and the value we read from Rt is used as
a data value for a memory write. Note that there is no WB stage, so this is a 4-stage pipeline.
Also note that the PC is always incremented by 4, so we do not need the other Add and Mux
units that compute the new PC for branches and jumps.

4.34.2

a. Assuming that the register write in WB happens in the fi rst half of the cycle and the register
reads in ID happen in the second half, we only need to forward the And result from the EX/WB
pipeline register to the inputs of the And unit in the EXE stage of the next instruction (if that
next instruction depends on the previous one). No hazard detection unit is needed because
forwarding eliminates all hazards.

b. There is no need for forwarding or hazard detection in this pipeline because there are no RAW
data dependences between two store instructions.

4.34.3 We need to add some decoding logic to our ID stage. The decoding logic
must simply check whether the opcode and funct fi led (if there is a funct fi eld)

Sol04-9780123747501.indd S55Sol04-9780123747501.indd S55 9/2/11 7:35 PM9/2/11 7:35 PM

S56 Chapter 4 Solutions

match this instruction. If there is no match, we must put the address of the excep-
tion handler into the PC (this adds a Mux before the PC) and fl ush (convert to
NOPs) the undefi ned instruction (write zeros to the ID/EX pipeline register) and
the following instruction which has already been fetched (write zeros to the IF/ID
pipeline register).

4.34.4

a. We need to replace the And unit in EXE with an ALU that supports either an Add or an And. The
ALUOp signal to select between these operations must be supplied by the Control unit.

b. The two operations are identical until the end of the EXE stage. After that, the ADDI operation
must store the ALU output to the Rt register, so we must add the WB stage (SW did not need
it). In fact, the work of the WB stage can be done in the MEM stage, so our pipeline remains a
4-stage pipeline. Our control logic must select whether we write the value of Rt to memory (for
SW) or we write the ALU result to Rt (for ADDI).

4.34.5

a. The same forwarding logic used for AND can be used for ADD, and we still need no hazard
detection.

b. Now we need forwarding because of ADDI instructions. Assuming that the register write in WB
happens in the fi rst half of the cycle and the register read in ID happens in the second half,
we need to forward the Add result of an ADDI instruction from the EX/WB pipeline register to
the fi rst (register Rs) input of the Add unit in the EXE stage of the next instruction if that next
instruction depends on the ADDI. We also need to forward that same Add result to replace
the Rt value that will be stored into memory by the next SW instruction, if that instruction’s Rt
register is the same register as the Rt (result) register of the ADDI instruction. Fortunately, we
still need no hazard detection.

4.34.6 The decoding logic must now check if the instruction matches either of
the two instructions. After that, the exception handling is the same as for 4.34.3.

Solution 4.35
4.35.1 The worst case for control hazards is if the mispredicted branch instruc-
tion is the last one in its cycle and we have been fetching the maximum number of
instructions in each cycle. Then the control hazard affects the remaining instructions
in the branch’s own pipeline stage and all instructions in stages between fetch and
the branch execution stage. We have:

Delay Slots Needed

a. 10 ´ 2 − 1 = 19

b. 15 ´ 4 − 1 = 59

Sol04-9780123747501.indd S56Sol04-9780123747501.indd S56 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S57

4.35.2 If branches are executed in stage X, the number of stall cycles due to a
misprediction is (N − 1). These cycles are reduced by fi lling them with delay-slot
instructions. We compute the number of execution (non-stall) cycles between mis-
predictions, and the speedup as follows:

Non-stall Cycles between
Mispredictions

Stall Cycles without
Delay Slots

Stall Cycles with 4
Delay Slots Speedup Due to Delay Slots

a. 1/(0.25 ´ (1 − 0.90) ´ 2) = 20 9 7 (20 + 9)/(20 + 7) = 1.074

b. 1/(0.15 ´ (1 − 0.96) ´ 4) = 41.7 14 13 (41.7 + 14)/(41.7 + 13) = 1.018

4.35.3 For 20% of the branches we add an extra instruction, for 30% of the
branches we add two extra instructions, and for 40% of the branches we add three
extra instructions. Overall, an average branch instruction is now accompanied by
0.20 + 0.30 × 2 + 0.40 × 3 = 2 NOP instructions. Note that these NOPs are added for
every branch, not just mispredicted ones. These NOP instructions add to the execu-
tion time of the program, so we have:

Total Cycles between
Mispredictions without

Delay Slots
Stall Cycles with 4

Delay Slots
Extra Cycles Spent on

NOPs Speedup Due to Delay Slots

a. 20 + 9 = 29 7 1 ´ 20 ´ 0.25 = 5 29/(20 + 7 + 5) = 0.906

b. 41.7 + 14 = 55.7 13 0.5 ´ 41.7 ´ 0.15 = 3.125 55.7/(41.7 + 13 + 3.125) = 0.963

4.35.4

a. add r2,zero,zero ; r1=0
Loop: beq r2,r3,End
 lb r10,1000(r2) ; Delay slot
 add r1,r1,r10
 beq zero,zero,Loop
 addi r2,r2,1 ; Delay slot
Exit:

b. add r2,zero,zero ; r1=0
Loop: beq r2,r3,End
 lb r10,1000(r2) ; Delay slot
 lb r11,1001(r2)
 sub r12 r10,r11
 add r1,r1,r12
 beq zero,zero,Loop
 addi r2,r2,2 ; Delay slot
Exit:

Sol04-9780123747501.indd S57Sol04-9780123747501.indd S57 9/2/11 7:35 PM9/2/11 7:35 PM

S58 Chapter 4 Solutions

4.35.5

a. add r2,zero,zero ; r1=0
Loop: beq r2,r3,End
 lb r10,1000(r2) ; Delay slot
 nop ; 2nd delay slot
 beq zero,zero,Loop
 add r1,r1,r10 ; Delay slot
 addi r2,r2,1 ; 2nd delay slot
Exit:

b. add r2,zero,zero ; r1=0
Loop: beq r2,r3,End
 lb r10,1000(r2) ; Delay slot
 lb r11,1001(r2) ; 2nd delay slot
 sub r12 r10,r11
 beq zero,zero,Loop
 add r1,r1,r12 ; Delay slot
 addi r2,r2,2 ; 2nd delay slot
Exit:

4.35.6 The maximum number of in-fl ight instructions is equal to the pipeline
depth times the issue width. We have:

Instructions in Flight Instructions per Iteration Iterations in Flight

a. 15 ´ 2 = 30 5 30/5 + 1 = 7

b. 25 ´ 4 = 100 7 roundUp(100/7) + 1 = 16

Note that an iteration is in fl ight when even one of its instructions is in fl ight. This
is why we add one to the number we compute from the number of instructions in
fl ight (instead of having an iteration entirely in fl ight, we can begin another one
and still have the “trailing” one partially in fl ight) and round up.

Solution 4.36
4.36.1

Instruction Translation

a. SWINC Rt,Offset(Rs) SW Rt,Offset(Rs)
ADDI Rs,Rs,4

b. SWI Rt,Rd(Rs) ADD tmp,Rd,Rs
SW Rt,0(tmp)

4.36.2 The ID stage of the pipeline would now have a lookup table and a micro-
PC, where the opcode of the fetched instruction would be used to index into the
lookup table. Micro-operations would then be placed into the ID/EX pipeline reg-
ister, one per cycle, using the micro-PC to keep track of which micro-op is the
next one to be output. In the cycle in which we are placing the last micro-op of an

Sol04-9780123747501.indd S58Sol04-9780123747501.indd S58 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S59

instruction into the ID/EX register, we can allow the IF/ID register to accept the
next instruction. Note that this results in executing up to one micro-op per cycle,
but we are actually fetching instructions less often than that.

4.36.3

Instruction

a. We need to add an incrementer in the MEM stage. This incrementer would increment the value
read from Rs while memory is being accessed. We also need to write this incremented value
back into Rs.

b. We can use the existing EX stage to perform this address calculation and then write to
memory in the MEM stage. But we do need an additional (third) register read port because this
instruction reads three registers in the ID stage, and we need to pass these three values to the
EX stage.

4.36.4 Not often enough to justify the changes we need to make to the pipeline.
Note that these changes slow down all the other instructions, so we are speeding
up a relatively small fraction of the execution while slowing down everything else.

4.36.5 Each original ADDM instruction now results in executing two more instruc-
tions, and also adds a stall cycle (the ADD depends on the LW). As a result, each
cycle in which we executed an ADDM instruction now adds three more cycles to the
execution. We have:

Speedup from ADDM Translation

a. 1/(1 + 0.03 ´ 3) = 0.92

b. 1/(1 + 0.05 ´ 3) = 0.87

4.36.6 Each translated ADDM adds the 3 stall cycles, but now half of the existing
stalls are eliminated. We have:

Speedup from ADDM Translation

a. 1/(1 + 0.03 ´ 3 − 0.12/2) = 0.97

b. 1/(1 + 0.05 ´ 3 − 0.20/2) = 0.95

Solution 4.37
4.37.1 All of the instructions use the instruction memory, the PC + 4 adder, the
control unit (to decode the instruction), and the ALU. For the least utilized unit,
we have:

a. The result of the branch adder (add offset to PC + 4) is never used.

b. The read port of the data memory is never used (no load instructions).

Sol04-9780123747501.indd S59Sol04-9780123747501.indd S59 9/2/11 7:35 PM9/2/11 7:35 PM

S60 Chapter 4 Solutions

Note that the branch adder performs its operation in every cycle, but its result is
actually used only when a branch is taken.

4.37.2 The read port is only used by LW and the write port by SW instructions.
We have:

Data Memory Read Data Memory Write

a. 20% (1 out of 5) 20% (1 out of 5)

b. 0% (no LW) 25% (1 out of 4)

4.37.3 In the IF/ID pipeline register, we need 32 bits for the instruction word
and 32 bits for PC + 4 for a total of 64 bits. In the ID/EX register, we need 32 bits
for each of the two register values, the sign-extended offset/immediate value, and
PC + 4 (for exception handling). We also need 5 bits for each of the three register
fi elds from the instruction word (Rs,Rt,Rd), and 10 bits for all the control signals
output by the Control unit. The total for the ID/EX register is 153 bits. In the EX/
MEM register, we need 32 bits each for the value of register Rt and for the ALU
result. We also need 5 bits for the number of the destination register and 4 bits for
control signals. The total for the EX/MEM register is 73 bits. Finally, for the MEM/
WB register we need 32 bits each for the ALU result and value from memory, 5 bits
for the number of the destination register, and 2 bits for control signals. The total
for MEM/WB is 71 bits. The grand total for all pipeline registers is 361 bits.

4.37.4 In the IF stage, the critical path is the I-Mem latency. In the ID stage, the
critical path is the latency to read Regs. In the EXE stage, we have a Mux and then
ALU latency. In the MEM stage we have the D-Mem latency, and in the WB stage
we have a Mux latency and setup time to write Regs (which we assume is zero). For
a single-cycle design, the clock cycle time is the sum of these per-stage latencies (for
a load instruction). For a pipelined design, the clock cycle time is the longest of
the per-stage latencies. To compare these clock cycle times, we compute a speedup
based on clock cycle time alone (assuming the number of clock cycles is the same
in single-cycle and pipelined designs, which is not true). We have:

IF ID EX MEM WB Single-Cycle Pipelined “Speedup”

a. 200ps 90ps 110ps 250ps 20ps 670ps 250ps 2.68

b. 750ps 300ps 300ps 500ps 50ps 1900ps 750ps 2.53

Note that this speedup is signifi cantly lower than 5, which is the “ideal” speedup of
5-stage pipelining.

4.37.5 If we only support ADD instructions, we do not need the MUX in the WB
stage, and we do not need the entire MEM stage. We still need Muxes before the
ALU for forwarding. We have:

Sol04-9780123747501.indd S60Sol04-9780123747501.indd S60 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S61

IF ID EX WB Single-Cycle Pipelined “Speedup”

a. 200ps 90ps 110ps 0ps 400ps 200ps 2.00

b. 750ps 300ps 300ps 0ps 1135ps 750ps 1.80

Note that the “ideal” speedup from pipelining is now 4 (we removed the MEM
stage), and the actual speedup is about half of that.

4.37.6 For the single-cycle design, we can reduce the clock cycle time by 1ps by
reducing the latency of any component on the critical path by 1ps (if there is only
one critical path). For a pipelined design, we must reduce latencies of all stages that
have longer latencies than the target latency. We have:

Single-Cycle Needed Cycle Time for Pipelined Cost for Pipelined

a. 0.2 ´ 670 = $134 0.8 ´ 250ps = 200ps $50 (MEM)

b. 0.2 ´ 1900 = $380 0.8 ´ 750ps = 600ps $150 (IF)

Note that the cost of improving the pipelined design by 20% is lower. This is
because its clock cycle time is already lower, so a 20% improvement represents
fewer picoseconds (and fewer dollars in our problem).

Solution 4.38
4.38.1 The energy for the two designs is the same: I-Mem is read, two registers
are read, and a register is written. We have:

a. 140pJ + 2 ´ 70ps + 60pJ = 340pJ

b. 70pJ + 2 ´ 40pJ + 40pJ = 190pJ

4.38.2 The instruction memory is read for all instructions. Every instruction also
results in two register reads (even if only one of those values is actually used).
A load instruction results in a memory read and a register write, a store instruction
results in a memory write, and all other instructions result in either no register
write (e.g., BEQ) or a register write. Because the sum of memory read and register
write energy is larger than memory write energy, the worst-case instruction is a
load instruction. For the energy spent by a load, we have:

a. 140pJ + 2 ´ 70pJ + 60pJ + 140pJ = 480pJ

b. 70pJ + 2 ´ 40pJ + 40pJ + + 90pJ = 280pJ

4.38.3 Instruction memory must be read for every instruction. However, we can
avoid reading registers whose values are not going to be used. To do this, we must

Sol04-9780123747501.indd S61Sol04-9780123747501.indd S61 9/2/11 7:35 PM9/2/11 7:35 PM

S62 Chapter 4 Solutions

add RegRead1 and RegRead2 control inputs to the Registers unit to enable or dis-
able each register read. We must generate these control signals quickly to avoid
lengthening the clock cycle time. With these new control signals, an LW instruction
results in only one register read (we still must read the register used to generate the
address), so we have:

Energy before Change Energy Saved by Change % Savings

a. 140pJ + 2 ´ 70pJ + 60pJ + 140pJ = 480pJ 70pJ 14.6%

b. 70pJ + 2 ´ 40pJ + 40pJ + + 90pJ = 280pJ 40pJ 14.3%

4.38.4 Before the change, the Control unit decodes the instruction while register
reads are happening. After the change, the latencies of Control and Register Read
cannot be overlapped. This increases the latency of the ID stage and could affect
the processor’s clock cycle time if the ID stage becomes the longest-latency stage.
We have:

Clock Cycle Time before Change Clock Cycle Time after Change

a. 250ps (D-Mem in MEM stage) No change (150ps + 90ps<250ps)

b. 750ps (I-Mem in IF stage) 800ps (Ctl then Regs in ID stage)

4.38.5 If memory is read in every cycle, the value is either needed (for a load
instruction), or it does not get past the WB Mux (or a non-load instruction that
writes to a register), or it does not get written to any register (all other instructions,
including stalls). This change does not affect clock cycle time because the clock
cycle time must already allow enough time for memory to be read in the MEM
stage. It does affect energy: a memory read occurs in every cycle instead of only in
cycles when a load instruction is in the MEM stage.

4.38.6

I-Mem Active Energy I-Mem Latency Clock Cycle Time Total I-Mem Energy Idle Energy %

a.
140pJ 200ps 250ps 140pJ + 50ps ´ 0.1 ´ 140pJ/

200ps = 143.5pJ
3.5pJ/143.5pJ = 2.44%

b. 70pJ 750ps 750ps 70pJ 0%

Solution 4.39
4.39.1 The number of instructions executed per second is equal to the number
of instructions executed per cycle (IPC, which is 1/CPI) times the number of cycles
per second (clock frequency, which is 1/T where T is the clock cycle time). The IPC

Sol04-9780123747501.indd S62Sol04-9780123747501.indd S62 9/2/11 7:35 PM9/2/11 7:35 PM

 Chapter 4 Solutions S63

is the percentage of cycle in which we complete an instruction (and not a stall), and
the clock cycle time is the latency of the maximum-latency pipeline stage. We have:

IPC Clock Cycle Time Clock Frequency Instructions per Second

a. 0.75 350ps 2.86GHz 2.14 ´ 109

b. 0.80 220ps 4.55GHz 3.64 ´ 109

4.39.2 Power is equal to the product of energy per cycle times the clock frequency
(cycles per second). The energy per cycle is the total of the energy expenditures in
all fi ve stages. We have:

Clock Frequency Energy per Cycle (in pJ) Power (W)

a. 2.86GHz 100 + 45 + 50 + 0.30 ´ 150 + 0.45 ´ 50 = 262.5 0.75

b. 4.55GHz 75 + 45 + 100 + 0.45 ´ 100 + 0.50 ´ 35 = 282.5 1.28

4.39.3 The time that remains in the clock cycle after a circuit completes its work
is often called slack. We determine the clock cycle time and then the slack for each
pipeline stage:

Clock Cycle Time IF Slack ID Slack EX Slack MEM Slack WB Slack

a. 350ps 100ps 0ps 200ps 50ps 150ps

b. 220ps 20ps 50ps 0ps 10ps 70ps

4.39.4 All stages now have latencies equal to the clock cycle time. For each stage,
we can compute the factor X for it by dividing the new latency (clock cycle time) by
the original latency. We then compute the new per-cycle energy consumption for
each stage by dividing its energy by its factor X. Finally, we re-compute the power
dissipation:

X for IF X for ID X for EX X for MEM X for WB New Power (W)

a. 350/250 350/350 350/150 350/300 350/200 0.54

b. 220/200 220/170 220/220 220/210 220/150 1.17

4.39.5 This changes the clock cycle time to 1.1 of the original, which changes the
factor X for each stage and the clock frequency. After that this problem is solved in
the same way as 4.39.4. We get:

X for IF X for ID X for EX X for MEM X for WB New Power (W)

a. 385/250 385/350 385/150 385/300 385/200 0.45

b. 242/200 242/170 242/220 242/210 242/150 0.97

Sol04-9780123747501.indd S63Sol04-9780123747501.indd S63 9/2/11 7:35 PM9/2/11 7:35 PM

S64 Chapter 4 Solutions

4.39.6 The X factor for each stage is the same as in 4.39.6, but this time in our
power computation we divide the per-cycle energy of each stage by X2 instead of x.
We get:

New Power (W) Old Power (W) Saved

a. 0.31 0.75 58.7%

b. 0.81 1.28 36.7%

Sol04-9780123747501.indd S64Sol04-9780123747501.indd S64 9/2/11 10:55 PM9/2/11 10:55 PM

 5 Solutions

Solution 5.1
5.1.1

a. no solution provided

b. no solution provided

5.1.2

a. no solution provided

b. no solution provided

5.1.3

a. no solution provided

b. no solution provided

5.1.4

a. no solution provided

b. no solution provided

5.1.5

a. no solution provided

b. no solution provided

5.1.6

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S1Sol05-9780123747501.indd S1 9/8/11 12:19 AM9/8/11 12:19 AM

S2 Chapter 5 Solutions

Solution 5.2
5.2.1 4

5.2.2

a. I, J

b. B[I][0]

5.2.3

a. A[I][J]

b. A[J][I]

5.2.4

a. 3596 = 8 × 800/4 × 2 – 8 × 8/4 + 8000/4

b. 3186 = 8 × 800/4 × 2 – 8 × 8/4 + 8/4

5.2.5

a. I, J

b. I, J, B(I, 0)

5.2.6

a. A(J, I)

b. A(I, J), A(J, I), B(I, 0)

Solution 5.3
5.3.1

a. no solution provided

b. no solution provided

5.3.2

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S2Sol05-9780123747501.indd S2 9/8/11 12:19 AM9/8/11 12:19 AM

 Chapter 5 Solutions S3

5.3.3

a. No solution provided

b. no solution provided

5.3.4

a. no solution provided

b. no solution provided

5.3.5 no solution provided

5.3.6 Yes, it is possible to use this function to index the cache. However, informa-
tion about the six bits is lost because the bits are XOR’d, so you must include more
tag bits to identify the address in the cache.

Solution 5.4
5.4.1

a. 8

b. 16

5.4.2

a. 32

b. 64

5.4.3

a. 1 + (22/8/32) = 1.086

b. 1 + (20/8/64) = 1.039

5.4.4 3

Address 0 4 16 132 232 160 1024 30 140 3100 180 2180

Line ID 0 0 1 8 14 10 0 1 9 1 11 8

Hit/miss M H M M M M M H H M M M

Replace N N N N N N Y N N Y N Y

Sol05-9780123747501.indd S3Sol05-9780123747501.indd S3 9/8/11 12:19 AM9/8/11 12:19 AM

S4 Chapter 5 Solutions

5.4.5 0.25

5.4.6 <Index, tag, data>

<0000012, 00012, mem[1024]>
<0000012, 00112, mem[16]>
<0010112, 00002, mem[176]>
<0010002, 00102, mem[2176]>
<0011102, 00002, mem[224]>
<0010102, 00002, mem[160]>

Solution 5.5
5.5.1

a. no solution provided

b. no solution provided

5.5.2

a. no solution provided

b. no solution provided

5.5.3

a. no solution provided

b. no solution provided

5.5.4

a. no solution provided

b. no solution provided

5.5.5

a. no solution provided

b. no solution provided

5.5.6

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S4Sol05-9780123747501.indd S4 9/8/11 12:19 AM9/8/11 12:19 AM

 Chapter 5 Solutions S5

Solution 5.6
5.6.1

no solution provided

5.6.2

no solution provided

5.6.3 With next-line prefetching, miss rate will be near 0%.

5.6.4

a. no solution provided

b. no solution provided

5.6.5

a. no solution provided

b. no solution provided

5.6.6

a. no solution provided

b. no solution provided

Solution 5.7
5.7.1

a. P1 1.52 GHz

P2 1.11 GHz

b. P1 926 MHz

P2 495 MHz

5.7.2

a. P1 6.31 ns 9.56 cycles

P2 5.11 ns 5.68 cycles

b. P1 3.47 ns 3.21 cycles

P2 4.07 ns 2.02 cycles

Sol05-9780123747501.indd S5Sol05-9780123747501.indd S5 9/8/11 12:19 AM9/8/11 12:19 AM

S6 Chapter 5 Solutions

5.7.3

a. P1 12.64 CPI 8.34 ns per inst P2

P2 7.36 CPI 6.63 ns per inst

b. P1 4.01 CPI 4.33 ns per inst P1

P2 2.38 CPI 4.81 ns per inst

5.7.4

a. 6.50 ns 9.85 cycles Worse

b. 3.84 ns 3.25 cycles Worse

5.7.5

a. 13.04

b. 4.06

5.7.6 no solution provided

Solution 5.8
5.8.1

a. no solution provided

b. no solution provided

5.8.2

a. no solution provided

b. no solution provided

5.8.3

a. no solution provided

b. no solution provided

5.8.4

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S6Sol05-9780123747501.indd S6 9/8/11 12:19 AM9/8/11 12:19 AM

 Chapter 5 Solutions S7

5.8.5

a. no solution provided

b. no solution provided

5.8.6

a. no solution provided

b. no solution provided

Solution 5.9
Instructors can change the disk latency, transfer rate, and optimal page size for
more variants. Refer to Jim Gray’s paper on the fi ve-minute rule 10 years later.

5.9.1 32 KB.

5.9.2 Still 32 KB.

5.9.3 64 KB. Because the disk bandwidth grows much faster than seek latency,
future paging cost will be closer to constant, thus favoring larger pages.

5.9.4 1987/1997/2007: 205/267/308 seconds (or roughly fi ve minutes).

5.9.5 1987/1997/2007: 51/533/4935 seconds (or 10 times longer for every
10 years).

5.9.6 (1) DRAM cost/MB scaling trend dramatically slows down; or (2) disk
$/access/sec dramatically increase. (2) is more likely to happen due to the emerging
fl ash technology.

Solution 5.10
5.10.1

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S7Sol05-9780123747501.indd S7 9/8/11 12:19 AM9/8/11 12:19 AM

S8 Chapter 5 Solutions

5.10.2

a. no solution provided

b. no solution provided

5.10.3

a. no solution provided

b. no solution provided

5.10.4

a. no solution provided

b. no solution provided

5.10.5

a. no solution provided

b. no solution provided

5.10.6

a. no solution provided

b. no solution provided

Solution 5.11
5.11.1

a. no solution provided

b. no solution provided

5.11.2

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S8Sol05-9780123747501.indd S8 9/8/11 12:19 AM9/8/11 12:19 AM

 Chapter 5 Solutions S9

5.11.3

a. no solution provided

b. no solution provided

5.11.4 TLB initialization, or process context switch.

5.11.5 TLB miss. When most missed TLB entries are cached in processor caches.

5.11.6 Write protection exception.

Solution 5.12
5.12.1

a. 0 hits

b. 3 hits

5.12.2

a. 1 hit

b. 3 hits

5.12.3

a. 1 hit or fewer

b. 4 hits or fewer

5.12.4 5.12.4 Any address sequence is fi ne so long as the number of hits is correct.

a. 1 hit

b. 4 hits

5.12.5 The best block to evict is the one that will cause the fewest misses in the
future. Unfortunately, a cache controller cannot know the future! Our best alterna-
tive is to make a good prediction.

Sol05-9780123747501.indd S9Sol05-9780123747501.indd S9 9/8/11 12:19 AM9/8/11 12:19 AM

S10 Chapter 5 Solutions

5.12.6 If you knew that an address had limited temporal locality and would confl ict
with another block in the cache, it could improve miss rate. On the other hand, you
could worsen the miss rate by choosing poorly which addresses to cache.

Solution 5.13
5.13.1 Shadow page table: (1) VM creates page table, hypervisor updates
shadow table; (2) nothing; (3) hypervisor intercepts page fault, creates new
mapping, and invalidates the old mapping in TLB; (4) VM notifi es the hypervi-
sor to invalidate the process’s TLB entries. Nested page table: (1) VM creates
new page table, hypervisor adds new mappings in PA to MA table; (2) hardware
walks both page tables to translate VA to MA; (3) VM and hypervisor update
their page tables, hypervisor invalidates stale TLB entries; (4) same as shadow
page table.

5.13.2

Native: 4; NPT: 24 (instructors can change the levels of page table)

Native: L; NPT: L × (L + 2)

5.13.3

Shadow page table: page fault rate

NPT: TLB miss rate

5.13.4

Shadow page table: 1.03

NPT: 1.04

5.13.5 Combining multiple page table updates

5.13.6 NPT caching (similar to TLB caching)

Solution 5.14
5.14.1

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S10Sol05-9780123747501.indd S10 9/8/11 12:19 AM9/8/11 12:19 AM

 Chapter 5 Solutions S11

5.14.2

a. no solution provided

b. no solution provided

5.14.3 Virtual memory aims to provide each application with the illusion of
the entire address space of the machine. Virtual machines aim to provide each
operating system with the illusion of having the entire machine to its disposal.
Thus they both serve very similar goals, and offer benefits such as increased
security. Virtual memory can allow for many applications running in the same
memory space to not have to manage keeping their memory separate.

5.14.4 Emulating a different ISA requires specifi c handling of that ISA’s API. Each
ISA has specifi c behaviors that will happen upon instruction execution, interrupts,
trapping to kernel mode, etc. that therefore must be emulated. This can require
many more instructions to be executed to emulate each instruction than was origi-
nally necessary in the target ISA. This can cause a large performance impact and
make it diffi cult to properly communicate with external devices. An emulated sys-
tem can potentially run faster than on its native ISA if the emulated code can be
dynamically examined and optimized. For example, if the underlying machine’s
ISA has a single instruction that can handle the execution of several of the emu-
lated system’s instructions, then potentially the number of instructions executed
can be reduced. This is similar to the recent Intel processors that do micro-op
fusion, allowing several instructions to be handled by fewer instructions.

Solution 5.15
5.15.1 The cache should be able to satisfy the request since it is otherwise idle
when the write buffer is writing back to memory. If the cache is not able to satisfy
hits while writing back from the write buffer, the cache will perform little or no
better than the cache without the write buffer, since requests will still be serialized
behind writebacks.

5.15.2 Unfortunately, the cache will have to wait until the writeback is complete
since the memory channel is occupied. Once the memory channel is free, the cache
is able to issue the read request to satisfy the miss.

5.14.3 Correct solutions should exhibit the following features:

1. The memory read should come before memory writes.
2. The cache should signal “Ready” to the processor before completing

the write.

Sol05-9780123747501.indd S11Sol05-9780123747501.indd S11 9/8/11 12:19 AM9/8/11 12:19 AM

S12 Chapter 5 Solutions

Example (simpler solutions exist; the state machine is somewhat underspecifi ed in
the chapter):

CPU req

Memory
ready Memory

ready
Miss

Memory
not ready

Memory
not ready

Mark cache ready

Old block
clean

Old block dirty

Miss

CPU req

Hit
Mark cache ready Idle Compare tag

Read new
block.
Copy old
block to write
buffer.

Wait for
write-back Compare tag

Pending
miss

Memory
not ready

Hit

Solution 5.16
5.16.1

a. no solution provided

b. no solution provided

5.16.2 no solution provided

5.16.3

a. no solution provided

b. no solution provided

5.16.4

a. no solution provided

b. no solution provided

Sol05-9780123747501.indd S12Sol05-9780123747501.indd S12 9/8/11 12:19 AM9/8/11 12:19 AM

 Chapter 5 Solutions S13

5.16.5

a. no solution provided

b. no solution provided

5.16.6 Write-through, non-write allocate simplifi es the most.

Solution 5.17
5.17.1

a. no solution provided

b. no solution provided

5.17.2

a. no solution provided

b. no solution provided

5.17.3

a. no solution provided

b. no solution provided

5.17.4

a. no solution provided

b. no solution provided

5.17.5

a. no solution provided

b. no solution provided

5.17.6

Processor: out-of-order execution, larger load/store queue, multiple hardware
threads

Caches: more miss status handling registers (MSHR)

Memory: memory controller to support multiple outstanding memory requests

Sol05-9780123747501.indd S13Sol05-9780123747501.indd S13 9/8/11 12:19 AM9/8/11 12:19 AM

S14 Chapter 5 Solutions

Solution 5.18
5.18.1

a. srcIP and refTime fi elds. 2 misses per entry.

b. srcIP and browser fi elds. 1 miss per entry.

5.18.2

a. Group the srcIP and refTime fi elds into a separate array.

b. Split the srcIP into a separate array; have a hash table on the browser fi eld.

5.18.3

a. peak_hour (int status); // peak hours of a given status
Group srcIP, refTime, and status together.

b. topK_sourceIP (int hour);

Group the srcIP and refTime fi elds into a separate array, and a browser hash table.

5.18.4

a. no solution provided

b. no solution provided

5.18.5

a. no solution provided

b. no solution provided

5.18.6

a. apsi/mesa/ammp/mcf all have such examples.

b. apsi/mesa/ammp/mcf all have such examples.

Example cache: 4-block caches, direct-mapped vs. 2-way LRU.

Reference stream (blocks): 1 2 2 6 1.

Sol05-9780123747501.indd S14Sol05-9780123747501.indd S14 9/8/11 12:19 AM9/8/11 12:19 AM

 6 Solutions

Solution 6.1
6.1.1

a. Auto Pilot Keypad – Input, Human
Display – Output, Human
Alarms – Output, Human
Control Surfaces – I/O, Machine

b. Automated Thermostat Keypad – Input, Human
Control Signals – Output, Machine

6.1.2

a. Auto Pilot Keypad – 0.0001 Mbit/sec
Display – 800 Mbit/sec
Alarms – 0.00001 (highly variable) Mbit/sec
Control Surfaces – 0.1 (highly variable) Mbit/sec

b. Automated Thermostat Keypad – 0.0001 Mbit/sec
Control Signals – 0.00001 Mbit/sec

6.1.3

a. Auto Pilot Keypad – Operation Rate
Display – Data Rate
Alarms – Operation Rate
Control Surfaces – Operation Rate for most
applications

b. Automated Thermostat Keypad – Operation Rate
Control Signals – Operation Rate

Solution 6.2
6.2.1

a. 1096 days 26,304 hours

b. 2558 days 61,392 hours

Sol06-9780123747501.indd S1Sol06-9780123747501.indd S1 9/2/11 11:45 PM9/2/11 11:45 PM

S2 Chapter 6 Solutions

6.2.2

a. 0.9990875912%

b. 0.9988272088%

6.2.3 Availability approaches 1.0. With the emergence of inexpensive drives, hav-
ing a nearly 0 replacement time for hardware is quite feasible. However, replacing
fi le systems and other data can take signifi cant time. Although a drive manufac-
turer will not include this time in their statistics, it is certainly a part of replacing
a disk.

6.2.4 MTTR becomes the dominant factor in determining availability. However,
availability would be quite high if MTTF also grew measurably. If MTTF is 1000
times MTTR, the specifi c value of MTTR is not signifi cant.

Solution 6.3
6.3.1

a. 14.011 ms

b. 10.025 ms

6.3.2

a. 14.022

b. 10.05

6.3.3 The dominant factor for all disks seems to be the average seek time, although
RPM would make a signifi cant contribution as well. Interestingly, by doubling the
block size, the RW time changes very little. Thus, block size does not seem to be
critical.

Solution 6.4
6.4.1

a. No An aircraft control system will process frequent requests for small amounts of information.
Increasing the sector size will decrease the rate at which requests can be processed.

b. No A phone switch processes frequent requests for small data elements. Increasing sector
size will potentially reduce performance.

Sol06-9780123747501.indd S2Sol06-9780123747501.indd S2 9/2/11 11:45 PM9/2/11 11:45 PM

 Chapter 6 Solutions S3

6.4.2

a. No An aircraft control system is not typically I/O limited. Faster access to disk may be useful
in some situations, but not normal operation.

b. No A phone switch should not be I/O limited. Faster access to disk may be useful, but may
improve performance in limited scenarios.

6.4.3

a. No Failure in an aircraft control system is not tolerable. Increasing disk failure rate for faster
data access is not acceptable.

b. No Failure in a phone switch is not tolerable. Increasing disk failure rate for faster data
access is not acceptable.

Solution 6.5
6.5.1 There is no penalty for either seek time or for the disk rotating into position
to access memory. In effect, if data transfer time remains constant, performance
should increase. What is interesting is that disk data transfer rates have always
outpaced improvements with disk alternatives. FLASH is the fi rst technology with
potential to catch hard disk.

6.5.2

a. No Increased drive performance is not an issue in an aircraft controller.

b. No Increased drive performance is not an issue in a phone switch.

6.5.3

a. No

b. No

Solution 6.6
6.6.1 Note that some of the specifi ed FLASH memories are controller limited.
This is to convince you to think about the system rather than simply the FLASH
memory.

a. 9.77 ms

b. 10.85 ms

Sol06-9780123747501.indd S3Sol06-9780123747501.indd S3 9/2/11 11:45 PM9/2/11 11:45 PM

S4 Chapter 6 Solutions

6.6.2 Note that some of the specifi ed FLASH memories are controller limited.
This is to convince you to think about the system rather than simply the FLASH
memory.

a. 4.89 ms

b. 5.43 ms

6.6.3 On initial thought, this may seem unexpected. However, as the FLASH
memory array grows, delays in propagation through the decode logic and delays
propagating decoded addresses to the FLASH array account for longer access times.

Solution 6.7
6.7.1

a. Asynchronous. The printer is electrically distant from the CPU.

b. Asynchronous. Scanner inputs are relatively infrequent in comparison to other inputs. The
scanner itself is electrically distant from the CPU.

6.7.2 For all devices in the table, problems with long, synchronous busses are the
same. Specifi cally, long synchronous busses typically use parallel cables that are
subject to noise and clock skew. The longer a parallel bus is, the more susceptible
it is to environmental noise. Balanced cables can prevent some of these issues, but
not without signifi cant expense. Clock skew is also a problem with the clock at the
end of a long bus being delayed due to transmission distance or distorted due to
noise and transmission issues. If a bus is electrically long, then an asynchronous
bus is usually best.

6.7.3 The only real drawback to an asynchronous bus is the time required to
transmit bulk data. Usually, asynchronous busses are serial. Thus, for large data
sets, transmission can be quite high. If a device is time sensitive, then an asyn-
chronous bus may not be the right choice. There are certainly exceptions to this
rule of thumb such as FireWire, an asynchronous bus that has excellent timing
properties.

Solution 6.8
6.8.1

a. USB due to distance from the CPU and low bandwidth requirements. FireWire would not be as
appropriate due to its daisy chaining implementation.

b. PCI due to higher throughput. No need for hot swap capabilities and the device will be close to
the CPU.

Sol06-9780123747501.indd S4Sol06-9780123747501.indd S4 9/2/11 11:45 PM9/2/11 11:45 PM

 Chapter 6 Solutions S5

6.8.2

Bus Type Protocol

PCI Uses a single, parallel data bus with control lines for each device. Individual devices do
not have controllers, but send requests and receive commands from the bus controller
through their control lines. Although the data bus is shared among all devices, control
lines belong to a single device on the bus.

USB Similar to the PCI bus except that data and control information is communicated
serially from the bus controller.

FireWire Uses a daisy chain approach. A controller exists in each device that generates requests
for the device and processes requests from devices after it on the bus. Devices relay
requests from other devices along the daisy chain until they reach the main bus
controller.

SATA As the name implies, Serial ATA uses a serial, point-to-point connection between a
controller and device. Although both SATA and USB are serial connections, point-to-point
implies that unlike USB, data lines are not shared by multiple connections. Like USB
and FireWare, SATA devices are hot swappable.

6.8.3

Bus Type Drawbacks

PCI The parallel bus used to transmit data limits the length of the bus. Having a fi xed
number of control lines limits the number of devices on the bus. The trade-off is speed.
PCI busses are not useful for peripherals that are physically distant from the computer.

USB Serial communication implies longer communication distances, but the serial nature of
the communication limits communication speed. USB busses are useful for peripherals
with relatively low data rates that must be physically distant from the computer.

FireWire Daisy chaining allows adding theoretically unlimited numbers of devices. However,
when one device in the daisy chain dies, all devices further along the chain cannot
communicate with the controller. The multiplexed nature of communication on FireWire
makes it faster than USB.

SATA The high-speed nature of SATA connections limits the length of the connection between
the controller and devices. The distance is longer than PCI, but shorter than FireWire or
USB. Because SATA connections are point-to-point, SATA is not as extensible as either
USB or FireWire.

Solution 6.9
6.9.1 A polled device is checked by devices that communicate with it. When
the devices requires attention or is available, the polling process communicates
with it.

a. No. Interface may be handled by polling, but not control or sensor inputs.

b. Yes

Sol06-9780123747501.indd S5Sol06-9780123747501.indd S5 9/2/11 11:45 PM9/2/11 11:45 PM

S6 Chapter 6 Solutions

6.9.2 Interrupt driven communication involves devices raising interrupts when
they require attention and the CPU processing those interrupts as appropriate.
While polling requires a process to periodically examine the state of a device, inter-
rupts are raised by the device and occur when the device is ready to communicate.
When the CPU is ready to communicate with the device, the handler associated
with the interrupt runs and then returns control to the main process.

a. Aircraft surfaces generate interrupts caused by movements. Controller generates signals back
to control surfaces. User displays can be managed by either polling or interrupts.

b. Polling is okay.

6.9.3 Basically, each interface is designed in a similar way with memory locations
identifi ed for inputs and outputs associated with devices.

a. The autopilot is an input/output device. It inputs 32 single word values from various sensors
on control surfaces and generates 32 single word values as control signals to actuators.
Status for 32 potential alarm values is stored in one word while four words store navigational
information.

b. An automated thermostat is a simple device, but it has both input and output functions. It uses
a keypad for communication to the user and on/off outputs to communicate with a furnace and
air conditioner. The keypad memory should hold values input by toggle switches and numeric
entries. The on/off outputs can be mapped to single bits in memory.

6.9.4

a. The autopilot is an input/output device that requires signifi cant I/O with a user and control
surfaces. User I/O can be handled by commands that fetch input information. Similarly, control
surfaces can be controlled by issuing individual commands or issuing commands with state for
several sensors.

b. An automated thermostat is a simple device, but it has both input and output functions. It uses
a keypad for communication to the user and on/off outputs to communicate with a furnace and
air conditioner. The keypad memory should hold values input by toggle switches and numeric
entries. The on/off outputs can be mapped to single bits in memory.

6.9.5 Absolutely. A graphics card is an excellent example. A memory map can be
used to store information that is to be displayed. Then, a command can be used to
actually display the information. Similar techniques would work for other devices
from the table.

Solution 6.10
6.10.1 Low-priority interrupts are disabled to prevent them from interrupting
the handling of the current interrupt that is higher priority. The status register
is saved to assure that any lower priority interrupts that have been detected are
handled when the status register is restored following handling of the current
interrupt.

Sol06-9780123747501.indd S6Sol06-9780123747501.indd S6 9/2/11 11:45 PM9/2/11 11:45 PM

 Chapter 6 Solutions S7

6.10.2 Lower numbers have higher interrupt priorities.

a. Ethernet Controller Data: 2 Mouse Controller: 3 Reboot: 1

b. Mouse Controller: 3 Power Down: 2 Overheat: 1

6.10.3

Power Down Interrupt Jump to an emergency power down sequence and begin execution.

Ethernet Controller Data
Interrupt

Save the current program state. Jump to the Ethernet controller
code and handle data input. Restore the program state and continue
execution.

Overheat Interrupt Jump to an emergency power down sequence and begin execution.

Mouse Controller Interrupt Save the current program state. Jump to the mouse controller code
and handle input. Restore the program state and continue execution.

Reboot Interrupt Jump to address 0 and reinitialize the system.

6.10.4 If the enable bit of the Cause register is not set then interrupts are all dis-
abled and no interrupts will be handled. Zeroing all bits in the mask would have
the same affect.

6.10.5 Hardware support for saving and restoring program state prior to inter-
rupt handling would help substantially. Specifi cally, when an interrupt is handled
that does not terminate execution, the running program must return to the point
where the interrupt occurred. Handling this in the operating system is certainly
feasible, but this solution requires storing information on the stack, in registers, in
a dedicated memory area, or some combination of the three. Providing hardware
support removes the burden of storing program state from the operating system.
Specifi cally, program state information need not be pulled from the CPU and
stored in memory.

This is essentially the same as handling a function call, except that some inter-
rupts do not allow the interrupted program to resume execution. Like an interrupt,
a function must store program state information before jumping to its code. There
are sophisticated activation record management protocols and frequently support-
ing hardware for many CPUs.

6.10.6 Priority interrupts can still be implemented by the interrupt handler in
roughly the same manner. Higher priority interrupts are handled fi rst and lower
priority interrupts are disabled when a higher priority interrupt is being handled.
Even though each interrupt causes a jump to its own vector, the interrupt system
implementation must still handle interrupt signals.

Both approaches have roughly the same capabilities.

Sol06-9780123747501.indd S7Sol06-9780123747501.indd S7 9/2/11 11:45 PM9/2/11 11:45 PM

S8 Chapter 6 Solutions

Solution 6.11
6.11.1 Yes. The CPU initiates the data transfer, but once the data transfer starts,
the device and memory communicate directly with no intervention from the CPU.

6.11.2

a. No. The datafl ow back and forth from a mouse is insignifi cant.

b. Possibly. One thought is the Ethernet controller handles signifi cant amounts of data. However,
that data is typically in relatively small packets. Depending on the functionality performed by the
controller, it may or may not make sense to have it use DMA.

DMA is useful when individual transactions with the CPU may involve large
amounts of data. A frame handled by a graphics card may be huge but is treated as
one display action. Conversely, input from a mouse is tiny.

6.11.3

a. No. The mouse controller will not use DMA.

b. No. The Ethernet controller will not use DMA.

Basically, any device that writes to memory directly can cause the data in memory
to differ from what is stored in cache.

6.11.4 Virtual memory swaps memory pages in and out of physical memory
based on locations being addressed. If a page is not in memory when an address
associated with it is accessed, the page must be loaded, potentially displacing
another page. Virtual memory works because of the principle of locality. Specifi -
cally, when memory is accessed, the likelihood of the next access being nearby is
high. Thus, pulling a page from disk to memory due to a memory access not only
retrieves the memory to be accessed, but likely the next memory element being
accessed.

Any of the devices listed in the table could cause potential problems if it
causes virtual memory to thrash, continuously swapping in and out pages from
physical memory. This would happen if the locality principle is violated by the
device. Careful design and suffi cient physical memory will almost always solve
this problem.

Solution 6.12
6.12.1

a. Not typically, although it is possible.

b. Yes.

Sol06-9780123747501.indd S8Sol06-9780123747501.indd S8 9/2/11 11:45 PM9/2/11 11:45 PM

 Chapter 6 Solutions S9

6.12.2

a. N/A

b. No. Online chat is dominated by transactions, not the size of those transactions.

6.12.3 See the previous problem for explanations.

a. N/A

b. Yes.

6.12.4 Polling would be more inappropriate for applications where numbers
of transactions handled is a good performance metric. When data throughput
dominates numbers of transactions, then polling could potentially be a reasonable
approach.

The selection of command driven or memory mapped I/O is more diffi cult. In
most situations, a mixture of the two approaches is the most pragmatic approach.
Specifi cally, use commands to handle interactions and memory to exchange data.
For transaction dominated I/O, command driven I/O will likely be suffi cient.

Solution 6.13
6.13.1

a. Large, concurrent data reads and writes.

b. Large numbers of small, concurrent transactions.

6.13.2 Standard benchmarks help when trying to compare and contrast differ-
ent systems. Ranking systems with benchmarks is generally not useful. However,
understanding trade-offs certainly is.

6.13.3 It does not make much sense to evaluate an I/O system outside the system
where it will be used. Although benchmarks help simulate the environment of a
system, nothing replaces live data in a live system.

CPUs are particularly diffi cult to evaluate outside of the system where they are
used. Again, benchmarks can help with this, but frequently Amdahl’s Law makes
spending resources on improving CPU speed have diminishing returns.

Solution 6.14
6.14.1 Striping forces I/O to occur on multiple disks concurrently rather than on
a single disk.

a. No, unless computations force the system to access disk frequently.

b. No. The bottleneck in such systems is network throughput not disk I/O.

Sol06-9780123747501.indd S9Sol06-9780123747501.indd S9 9/2/11 11:45 PM9/2/11 11:45 PM

S10 Chapter 6 Solutions

6.14.2 The MTBF is calculated as MTTF+MTTR, with MTTF as the dominating
factor. For the RAID 1 system with redundancy to fail, both disks must fail. The
probability of both disks failing is the product of a single disk failing. The result is
a substantially increased MTBF.

In all applications, decreasing the likelihood of data loss is good. However,
online database and video services are particularly sensitive to resource availability.
When such systems are offl ine, revenue loss is immediate and customers lose con-
fi dence in the service.

6.14.3 RAID 1 maintains two complete copies of a dataset while RAID 3 main-
tains error correction data only. The trade-off is storage cost. RAID 1 requires two
times the actual storage capacity while RAID 3 requires substantially less. This must
be viewed both in terms of the cost of disks, but also power and other resources
required to keep the disk array running.

In the previous applications, large online services like database and video ser-
vices would defi nitely benefi t from RAID 3. Video and sound editing may also
benefi t from RAID 3, but these applications are not as sensitive to availability issues
as online services.

Solution 6.15
6.15.1

a. DEE8

b. 7B25

6.15.2

a. F030

b. 78E9

6.15.3 RAID 4 is more effi cient because it requires fewer reads to generate the
next parity word value. Specifi cally, RAID 3 accesses every disk for every data write
no matter which disk is being written to. For smaller writes where data is located
on a single disk, RAID 4 will be more effi cient.

RAID 3 has no inherent advantages to RAID 4.

6.15.4 RAID 5 distributes parity blocks throughout the disk array rather than
on a single disk. This eliminates the parity disk as a bottleneck during disk access.
For applications with high numbers of concurrent reads and writes, RAID 5 will
be more effi cient. For lower volume, RAID 5 will not signifi cantly outperform
RAID 4.

Sol06-9780123747501.indd S10Sol06-9780123747501.indd S10 9/2/11 11:45 PM9/2/11 11:45 PM

 Chapter 6 Solutions S11

6.15.5 As the number of disks grows by 1, the number of accesses required to
calculate a parity word in RAID 3 also grows by 1. In contrast, RAID 4 and 5 con-
tinue to access only existing values of data being stored. Thus, as the number of
disks grows, RAID 3 performance will continue to degrade while RAID 4 and 5 will
remain constant.

There is no performance advantage for RAID 4 or 5 over RAID 3 for small num-
bers of disks. For two disks, there is no difference.

Solution 6.16
6.16.1

a. 8000

b. 7500

6.16.2

16 Disks 8 Disks 4 Disks 2 Disks

IOPS Bottleneck? IOPS Bottleneck? IOPS Bottleneck? IOPS Bottleneck?

a. 28000 No 14000 No 7000 Yes 3500 Yes

b. 14000 No 7000 Yes 3500 Yes 1750 Yes

6.16.3

PCI Bus DIMM Front Side Bus

IOPS Bottleneck? IOPS Bottleneck? IOPS Bottleneck?

a. 31250 No 83375 No 165625 No

b. 15625 No 41687.5 No 82812.5 No

6.16.4 The assumptions made in approximating I/O performance are extensive.
From the approximation of I/O commands generated by the executing system
through sequential and random I/O events handled by disks, the approximations
are extensive. By benchmarking in a full system, or executing an actual application,
an engineer can see actual numbers that are far more accurate than approximate
calculations.

Solution 6.17
6.17.1 Runtime characteristics vary substantially from application to applica-
tion. All three applications perform some kind of transaction processing, but those

Sol06-9780123747501.indd S11Sol06-9780123747501.indd S11 9/2/11 11:45 PM9/2/11 11:45 PM

S12 Chapter 6 Solutions

transactions may be different in nature. A web server processes numerous transac-
tions typically involving small amounts of data. Thus, transaction throughput is
critical. A database server is similar, but the data transferred may be much larger.
A bioinformatics data server will deal with huge data sets where transactions pro-
cessed is not nearly as critical as data throughput.

When identifying the runtime characteristics of the application, you are implic-
itly identifying characteristics for evaluation. For a web server, transactions per
second is a critical metric. For the bioinformatics data server, data throughput is
critical. For a database server, you will want to balance both criteria.

6.17.2 It is relatively easy to use online resources to identify potential servers.
You may also fi nd advertisements in periodicals from your professional societies or
trade journals. You should be able to identify one or more candidates using the cri-
teria identifi ed in 6.17.1. If your reasons for selecting the server don’t follow from
the criteria in 6.17.1, something is not right.

6.17.3 In Problem 6.16, we used characteristics of a Sun Fire x4150 to attempt
to predict its performance. You can use the same data and characteristics here.
Remember that the Sun Fire x4150 has multiple confi gurations. You should con-
sider this when you perform your evaluation.

Find similar measurements for the server that you have selected. Most of this
data should be available online. If not, contact the company providing the server
and see if such data is available.

It’s a reasonably simple task to use a spreadsheet to evaluate numerous confi gu-
rations and systems simultaneously. If you design your spreadsheet carefully, you
can simply enter a table of data and make comparisons quickly. This is exactly what
you will do in industry when evaluating systems.

6.17.4 Although analytic analysis is useful when comparing systems, noth-
ing beats hands-on evaluation. There are a number of test suites available that
will serve your needs here. Virtually all of them will be available online. Look for
benchmarks that generate transactions for the web server, those that generate large
data transfers for the bioinformatics server, and a combination of the two for the
database server.

Solution 6.18
6.18.1

a. 8.76

b. 9.125

Sol06-9780123747501.indd S12Sol06-9780123747501.indd S12 9/2/11 11:45 PM9/2/11 11:45 PM

 Chapter 6 Solutions S13

6.18.2

7 Years 10 Years

a. 26.28 189.8

b. 32.85 237.25

6.18.3 Average failure rates of the drives with longer longevity for 7 and 10 years
are:

7 Years 10 Years

a. 16.06 36.5

b. 12.775 38.325

It is not surprising that with failure rates starting to double 3 years later, we have to
replace far fewer disks in the second situation than the fi rst. The ratio of the num-
ber of drives replaced in the fi rst scenario to the number replaced in the second
should give us the multiple that we want:

7 Years 10 Years

a. 1.64 5.2

b. 2.57 6.19

Solution 6.19
6.19.1 In all cases, no. The objective of the customer is not known. Thus, improv-
ing any performance metric by nearly doubling the cost may or may not have a
price impact on the company.

6.19.2 As a search engine provider paid by ad hits, throughput is critical. Most
HTTP traffi c is small, so the network is not as great a bottleneck as it would be for
large data transfers. RAID 0 may be an effective solution. However, RAID 1 will
almost certainly not be an effective solution. Increased availability makes our prod-
uct more attractive, but a 1.6 cost multiple is most likely too high.

RAID 0 is going to increase throughput by 70%, meaning the potential exists
to serve 1.7 times as many ads. The cost of this gain is 0.6 of the original price.
1.7 times as many ads for 1.6 times the original cost may justify the upgrade cost.

6.19.3 This problem is not as simple as it would seem at fi rst glance. As an
online backup provider, availability is critical. Thus, using RAID 1 where failure

Sol06-9780123747501.indd S13Sol06-9780123747501.indd S13 9/2/11 11:45 PM9/2/11 11:45 PM

S14 Chapter 6 Solutions

rate decreases for a 1.6 times cost increase might be worthwhile. However, online
backup is more appealing when services are provided quickly making RAID 0
appealing. Remember Amdahl’s law. Will increasing throughput in the disk array
for long data reads and writes result in performance improvements for the system?
The network will be our throughput bottleneck, not disk access. RAID 0 will not
help much.

RAID 1 has more potential for increased revenue by making the disk array avail-
able more. For our original confi guration, we are losing between 12 and 19 disks
per 1000 to 1500 every 7 years. If the system lifetime is 7 years, the RAID 1 upgrade
will almost certainly not pay for itself even though it addresses the most critical
property of our system. Over 10 years, we lose between 30 and 50 drives. If repair
times are small, then even over a 10-year span the RAID 1 solution will not be cost
effective.

Solution 6.20
6.20.1 The approach to solving this problem is relatively simple once parameters
of a bioinformatics simulation are understood. Simulations tend to run days or
months. Thus, losing simulation data or having a system failure during simula-
tion are catastrophic events. Availability is therefore a critical evaluation parameter.
Additionally, the disk array will be accessed by 1000 parallel processors. Through-
put will be a major concern.

The primary role of the power constraint in this problem is to prevent simply
maximizing all parameters in the disk array. Adding additional disks and control-
lers without justifi cation will increase power consumption unnecessarily.

6.20.2 Remember that your system must provide both backup and archiving.
Thus, you will need multiple copies of your data and may be required to move
those copies offsite. This makes none of the solutions optimal.

RAID or a second backup array provides high-speed backup, but does not
 provide archival capabilities. Magnetic tape allows archiving, but can be exception-
ally slow when comparing to disk backups. Online backup automatically achieves
archiving, but can be even slower than disks.

6.20.3 Your benchmarks must evaluate backup throughput. Most other param-
eters that govern selection of a system are relatively well understood—portability
and cost being the primary issues to be evaluated.

Sol06-9780123747501.indd S14Sol06-9780123747501.indd S14 9/2/11 11:45 PM9/2/11 11:45 PM

 7 Solutions

Solution 7.1
There is no single right answer for this question. The purpose is to get students to
think about parallelism present in their daily lives. The answer should have at least 10
activities identifi ed.

7.1.1 Any reasonable answer is correct here.

7.1.2 Any reasonable answer is correct here.

7.1.3 Any reasonable answer is correct here.

7.1.4 The student is asked to quantify the savings due to parallelism. The answer
should consider the amount of overlap provided through parallelism and should be
less than or equal to (if no parallelism was possible) to the original time computed if
each activity was carried out serially.

Solution 7.2
7.2.1 While binary search has very good serial performance, it is diffi cult to paral-
lelize without modifying the code. So part A asks to compute the speedup factor, but
increasing X beyond 2 or 3 should have no benefi ts. While we can perform the com-
parison of low and high on one core, the computation for mid on a second core, and
the comparison for A[mid] on a third core, without some restructuring or specula-
tive execution, we will not obtain any speedup. The answer should include a graph,
showing that no speedup is obtained after the values of 1, 2 or 3 (this value depends
somewhat on the assumption made) for Y.

7.2.2 In this question, we suggest that we can increase the number of cores to each
the number of array elements. Again, given the current code, we really cannot obtain
any benefi t from these extra cores. But if we create threads to compare the N elements
to the value X and perform these in parallel, then we can get ideal speedup (Y times
speedup), and the comparison can be completed in the amount of time to perform a
single comparison.

This problem illustrates that some computations can be done in parallel if serial code
is restructured. But more importantly, we may want to provide for SIMD operations
in our ISA, and allow for data-level parallelism when performing the same operation
on multiple data items.

Sol07-9780123747501.indd S1Sol07-9780123747501.indd S1 30/07/11 9:58 AM30/07/11 9:58 AM

S2 Chapter 7 Solutions

Solution 7.3
7.3.1 This is a straightforward computation. The fi rst instruction is executed
once, and the loop body is executed 998 times.

Version 1—17,965 cycles

Version 2—22,955 cycles

Version 3—20,959 cycles

7.3.2 Array elements D[j] and D[j−1] will have loop carried dependencies. These
will f3 in the current iteration and f1 in the next iteration.

7.3.3 This is a very challenging problem and there are many possible implemen-
tations for the solution. The preferred solution will try to utilize the two nodes by
unrolling the loop 4 times (this already gives you a substantial speedup by elimi-
nating many loop increment, branch and load instructions. The loop body run-
ning on node 1 would look something like this (the code is not the most effi cient
code sequence):

DADDIU r2, r0, 996
L.D f1, –16(r1)
L.D f2, –8(r1)

loop:

ADD.D f3, f2, f1
ADD.D f4, f3, f2
Send (2, f3)
Send (2, f4)
S.D f3, 0(r1)
S.D f4, 8(r1)
Receive(f5)
ADD.D f6, f5, f4
ADD.D f1, f6, f5
Send (2, f6)
Send (2, f1)
S.D. f5, 16(r1)
S.D f6, 24(r1)
S.D f1 32(r1)
Receive(f2)
S.D f2 40(r1)
DADDIU r1, r1, 48
BNE r1, r2, loop

Sol07-9780123747501.indd S2Sol07-9780123747501.indd S2 30/07/11 9:58 AM30/07/11 9:58 AM

 Chapter 7 Solutions S3

ADD.D f3, f2, f1
ADD.D f4, f3, f2
ADD.D f6, f5, f4
S.D f3, 0(r1)
S.D f4, 8(r1)
S.D f5, 16(r1)

The code on node 2 would look something like this:

DADDIU r3, r0, 0

loop:

Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
DADDIU r3, r3, 1
BNE r3, 83, loop

Basically Node 1 would compute 4 adds each loop iteration, and Node 2 would
compute 4 adds. The loop takes 1463 cycles, which is much better than close to
18K. But the unrolled loop would run faster given the current send instruction
latency.

7.3.4 The loop network would need to respond within a single cycle to obtain a
speedup. This illustrates why using distributed message passing is diffi cult when
loops contain loop-carried dependencies.

Solution 7.4
7.4.1 This problem is again a divide and conquer problem, but utilizes recursion
to produce a very compact piece of code. In part A the student is asked to compute

Sol07-9780123747501.indd S3Sol07-9780123747501.indd S3 30/07/11 9:58 AM30/07/11 9:58 AM

S4 Chapter 7 Solutions

the speedup when the number of cores is small. We when forming the lists, we
spawn a thread for the computation of left in the MergeSort code, and spawn a
thread for the computation of the right. If we consider this recursively, for m initial
elements in the array, we can utilize 1 + 2 + 4 + 8 + 16 + …. log2 (m) processors to
obtain speedup.

7.4.2 In this question, log2 (m) is the largest value of Y for which we can obtain
any speedup without restructuring. But if we had m cores, we could perform sort-
ing using a very different algorithm. For instance, if we have greater than m/2 cores,
we can compare all pairs of data elements, swap the elements if the left element
is greater than the right element, and then repeat this step m times. So this is one
possible answer for the question. It is known as parallel comparison sort. Various
comparison sort algorithms include odd-even sort and cocktail sort.

Solution 7.5
7.5.1 For this set of resources, we can pipeline the preparation. We assume that
we do not have to reheat the oven for each cake.

Preheat Oven

Mix ingredients in bowl for Cake 1

Fill cake pan with contents of bowl and bake Cake 1. Mix ingredients for Cake 2
in bowl.

Finish baking Cake 1. Empty cake pan. Fill cake pan with bowl contents for Cake 2
and bake Cake 2. Mix ingredients in bowl for Cake 3.

Finish baking Cake 2. Empty cake pan. Fill cake pan with bowl contents for Cake 3
and bake Cake 3.

Finish baking Cake 3. Empty cake pan.

7.5.2 Now we have 3 bowls, 3 cake pans and 3 mixers. We will name them A, B
and C.

Preheat Oven

Mix incredients in bowl A for Cake 1

Fill cake pan A with contents of bowl A and bake for Cake 1. Mix ingredients for
Cake 2 in bowl A.

Finish baking Cake 1. Empty cake pan A. Fill cake pan A with contents of bowl A
for Cake 2. Mix ingredients in bowl A for Cake 3.

Sol07-9780123747501.indd S4Sol07-9780123747501.indd S4 30/07/11 9:58 AM30/07/11 9:58 AM

 Chapter 7 Solutions S5

Finishing baking Cake 2. Empty cake pan A. Fill cake pan A with contents of bowl
A for Cake 3.

Finish baking Cake 3. Empty cake pan A.

The point here is that we cannot carry out any of these items n parallel because we
either have one person doing the work, or we have limited capacity in our oven.

7.5.3 Each step can be done in parallel for each cake. The time to bake 1 cake,
2 cakes or 3 cakes is exactly the same.

7.5.4 The loop computation is equivalent to the steps involved to make one
cake. Given that we have multiple processors (or ovens and cooks), we can exe-
cute instructions (or cook multiple cakes) in parallel. The instructions in the
loop (or cooking steps) may have some dependencies on prior instructions (or
cooking steps) in the loop body (cooking a single cake). Data-level parallelism
occurs when loop iterations are independent (i.e., no loop carried dependencies).
Task-level parallelism includes any instructions that can be computed on parallel
execution units, are similar to the independent operations involved in making
multiple cakes.

Solution 7.6

7.6.1 This problem presents an “embarrassingly parallel” computation and asks
the student to fi nd the speedup obtained on a 4-core system. The computations
involved are: (m × p × n) multiplications and (m × p × (n − 1)) additions. The
multiplications and additions associated with a single element in C are depen-
dent (we cannot start summing up the results of the multiplications for a element
until two products are available). So in this question, the speedup should be very
close to 4.

7.6.2 This question asks about how speedup is affected due to cache misses
caused by the 4 cores all working on different matrix elements that map to the
same cache line. Each update would incur the cost of a cache miss, and so will
reduce the speedup obtained by a factor of 3 times the cost of servicing a cache
miss.

7.6.3 In this question, we are asked how to fi x this problem. The easiest way to
solve the false sharing problem is to compute the elements in C by traversing the
matrix across columns instead of rows (i.e., using index-j instead of index-i). These
elements will be mapped to different cache lines. Then we just need to make sure
we processor the matrix index that is computed (i, j) and (i + 1, j) on the same core.
This will eliminate false sharing.

Sol07-9780123747501.indd S5Sol07-9780123747501.indd S5 30/07/11 9:58 AM30/07/11 9:58 AM

S6 Chapter 7 Solutions

Solution 7.7
7.7.1

x = 2, y = 2, w = 1, z = 0

x = 2, y = 2, w = 3, z = 0

x = 2, y = 2, w = 5, z = 0

x = 2, y = 2, w = 1, z = 2

x = 2, y = 2, w = 3, z = 2

x = 2, y = 2, w = 5, z = 2

x = 2, y = 2, w = 1, z = 4

x = 2, y = 2, w = 3, z = 4

x = 3, y = 2, w = 5, z = 4

7.7.2 We could set synchronization instructions after each operation so that all
cores see the same value on all nodes.

Solution 7.8
7.8.1 1 byte × C entries = number of bytes consumed in the cache for maintain-
ing coherence.

7.8.2 P bytes/entry × S/T = number of bytes needed to store coherency informa-
tion in each directory on a single node.

Solution 7.9
7.9.1 There are a number of correct answers since the answer depends upon the
write protocol and the cache coherency protocol chosen. First, the write will gener-
ate a read from memory of the L2 cache line, and then the line is written to the L1
cache. Any data that was “dirty” in L2 that was replaced is written back to memory.
The data updated in the block is updated in L1 and L2 (assuming L1 is updated on
a write miss). The status of the line is set to “dirty”. Specifi c to the coherency pro-
tocol assumed, on the fi rst read from another node, a cache-to-cache transfer takes
place of the entire dirty cache line. Depending on the cache coherency protocol
used, the status of the line will be changed (in our answer it will become “shared”
in both caches). The other two reads can be serviced from any of the caches on the
two nodes with the updated data. The accesses for the other three writes are han-
dled exactly the same way. The key concept here is that all nodes are interrogated
on all reads to maintain coherency, and all must respond to service the read miss.

Sol07-9780123747501.indd S6Sol07-9780123747501.indd S6 30/07/11 9:58 AM30/07/11 9:58 AM

 Chapter 7 Solutions S7

7.9.2 For a directory-based mechanism, since the address space of memory is
divided up on a node-by-node basis, only the directory responsible for the address
requested needs to be interrogated. The directory controller will then initiate the
cache-to-cache transfer, but will not need to bother the L2 caches on the nodes
where the line is not present. All state updates are handled locally at the directory.
For the last two reads, again the single directory is interrogated and the directory
controller initiates the cache-to-cache transfer. But only the two nodes participat-
ing in the transfer are involved. This increases the L2 bandwidth since only the
minimum number of cache accesses/interrogations are involved in the transaction.

7.9.3 The answer to this question is similar, though there are subtle differences.
For the cache-based block status case, all coherency traffi c is managed at the L2
level between CPUs, so this scenario should not change except that reads by the 3
local cores should not generate any coherence messages outside of the CPU. For
the directory case, all accesses need to interrogate the directory and the directory
controller will initiate cache-to-cache transfers. Again, the number of accesses is
greatly reduced using the directory approach.

7.9.4 This is a case of how false sharing can bring a system to its knees. Assuming
an invalidate on write policy, for writes on the same CPU, the L1 dirty copy from
the fi rst write will be invalidated on the second write, and this same pattern will
occur on the third and fourth write. When writes are done on another CPU, then
coherence management moves to the L2, and the L2 copy on the fi rst CPU is invali-
dated. The local write activity is the same as for the fi rst CPU. This repeats for the
last two CPUs. Of course, this assumes that the order of the writes is in numerical
order, with the group of 4 writes being performed on the same CPU on each core.
If we instead assume that consecutive writes are performed by different CPUs each
time, then invalidates will take place at the L2 cache level on each write.

Solution 7.10
This question looks at the impact of handling a second memory access when one is
pending, given the fact that one is pending.

7.10.1 We will encounter a 500 cycle stall every 375 cycles

7.10.2 We will encounter a 600 cycle stall every 375 cycles

7.10.3 We will encounter a 400 cycle stall every 375 cycles

Solution 7.11

7.11.1 If every philosopher simultaneously picks up the left fork, then there will
be no right fork to pick up. This will lead to starvation.

Sol07-9780123747501.indd S7Sol07-9780123747501.indd S7 30/07/11 9:58 AM30/07/11 9:58 AM

S8 Chapter 7 Solutions

7.11.2 The basic solution is that whenever a philosopher wants to eat, she checks
both forks. If they are free, then she eats. Otherwise, she waits until a neighbor contacts
her. Whenever a philosopher fi nishes eating, she checks to see if her neighbors want to
eat and are waiting. If so, then she releases the fork to one of them and lets them eat.

The diffi culty is to fi rst be able to obtain both forks without another philosopher
interrupting the transition between checking and acquisition. We can implement
this a number of ways, but a simple way is to accept requests for forks in a central-
ized queue, and give out forks based on the priority defi ned by being closest to the
head of the queue. This provides both deadlock prevention and fairness.

7.11.3 There are a number or right answers here, but basically showing a case
where the request of the head of the queue does not have the closest forks available,
though there are forks available for other philosophers.

7.11.4 By periodically repeating the request, the request will move to the head
of the queue. This only partially solves the problem unless you can guarantee that
all philosophers eat for exactly the same amount of time, and can use this time to
schedule the issuance of the repeated request.

Solution 7.12
7.12.1

Core 1 Core 2

A3 B1, B4

A1, A2 B1, B4

A1, A4 B2

A1 B3

7.12.2

FU1 FU2

A1 A2

A1

A1

B1 B3

B1

A3

A4

B2

B4

Sol07-9780123747501.indd S8Sol07-9780123747501.indd S8 30/07/11 9:58 AM30/07/11 9:58 AM

 Chapter 7 Solutions S9

7.12.3

FU1 FU2

A1 B1

A1 B1

A1 B2

A2 B3

A3 B4

A4

Solution 7.13
This is an open-ended question.

Solution 7.14

7.14.1 The answer should include a MIPS program that includes 4 different pro-
cesses that will compute ¼ of the sums. Assuming that memory latency is not an
issue, the program should get linear speed when run on the 4 processors (there is
no communication necessary between threads). If memory is being considered in
the answer, then the array blocking should consider preserving spatial locality so
that false sharing is not created.

7.14.2 Since this program is highly data parallel and there are no data dependen-
cies, a 8X speedup should be observed. In terms of instructions, the SIMD machine
should have fewer instructions (though this will depend upon the SIMD exten-
sions).

Solution 7.15
This is an open-ended question that could have many possible answers. The key is
that the student learns about MISD and compares it to an SIMD machine.

Solution 7.16
This is an open-ended question that could have many answers. The key is that the
students learn about warps.

Solution 7.17
This is an open-ended programming assignment. The code should be tested for
correctness.

Sol07-9780123747501.indd S9Sol07-9780123747501.indd S9 30/07/11 9:58 AM30/07/11 9:58 AM

S10 Chapter 7 Solutions

Solution 7.18
This question will require the students to research on the Internet both the
AMD Fusion architecture and the Intel QuickPath technology. The key is that
students become aware of these technologies. The actual bandwidth and latency
values should be available right off the company websites, and will change as the
technology evolves.

Solution 7.19

7.19.1 For an n-cube of order N (2N nodes), the interconnection network can
sustain N–1 broken links and still guarantee that there is a path to all nodes in the
network.

7.19.2 The plot below shows the number of network links that can fail and still
guarantee that the network is not disconnected.

Solution 7.20

7.20.1 Major differences between these suites include:

Whetstone—designed for fl oating point performance specifi cally

PARSEC—these workloads are focused on multithreaded programs

7.20.2 Only the PARSEC benchmarks should be impacted by sharing and syn-
chronization. This should not be a factor in Whetstone.

1

10

100

1000

10000

100000

Network order

N
um

be
r

of
 fa

ul
ty

 li
nk

s

ncube

fully connected

4 8 162

Sol07-9780123747501.indd S10Sol07-9780123747501.indd S10 30/07/11 9:58 AM30/07/11 9:58 AM

 Chapter 7 Solutions S11

Solution 7.21
7.21.1 Any reasonable C program that performs the transformation should be
accepted.

7.21.2 The storage space should be equal to (R + R) times the size of a single-
precision fl oating point number + (m + 1) times the size of the index, where R is
the number of non-zero elements and m is the number of rows. We will assume
each fl oating-point number is 4 bytes, and each index is a short unsigned integer
that is 2 bytes.

For Matrix X this equals 111 bytes.

7.21.3 The answer should include results for both a brute-force and a computa-
tion using the Yale Sparse Matrix Format.

7.21.4 There are a number of more effi cient formats, but their impact should be
marginal for the small matrices used in this problem.

Solution 7.22
This question presents three different CPU models to consider when executing the
following code:

if (X[i][j] > Y[i][j])
count++;

7.22.1 There are a number of acceptable answers here, but they should consider the
capabilities of each CPU and also its frequency. What follows is one possible answer:

Since X and Y are FP numbers, we should utilize the vector processor (CPU C) to
issue 2 loads, 8 matrix elements in parallel from A and 8 matrix elements from B,
into a single vector register and then perform a vector subtract. We would then
issue 2 vector stores to put the result in memory.

Since the vector processor does not have comparison instructions, we would
have CPU A perform 2 parallel conditional jumps based on fl oating point regis-
ters. We would increment two counts based on the conditional compare. Finally,
we could just add the two counts for the entire matrix. We would not need to
use core B.

7.22.2 The point of the problem is to show that it is diffi cult to perform opera-
tion on individual vector elements when utilizing a vector processor. What might
be a nice instruction to add would be a vector comparison that would allow for us
to compare two vectors and produce scalar value of the number of elements where
one vector was larger the other. This would reduce the computation to a single

Sol07-9780123747501.indd S11Sol07-9780123747501.indd S11 30/07/11 9:58 AM30/07/11 9:58 AM

S12 Chapter 7 Solutions

instruction for the comparison of 8 FP number pairs, and then an integer compu-
tation for summing up all of these values.

Solution 7.23
This question looks at the amount of queuing that is occurring in the system given
a maximum transaction processing rate, and the latency observed on average by a
transaction. The latency includes both the service time (which is computed by the
maximum rate) and the queue time.

7.23.1 So for a max transaction processing rate of 5000/sec, and we have 4 cores
contributing, we would see an average latency of .8 ms if there was no queuing tak-
ing place. Thus, each core must have 1.25 transactions either executing or in some
amount of completion on average.

So the answers are:

Latency Max TP rate Avg. # requests per core

1 ms 5000/sec 1.25

2 ms 5000/sec 2.5

1 ms 10,000/sec 2.5

2 ms 10,000/sec 5

7.23.2 We should be able to double the maximum transaction rate by doubling
the number of cores.

7.23.3 The reason this does not happen is due to memory contention on the
shared memory system.

Sol07-9780123747501.indd S12Sol07-9780123747501.indd S12 30/07/11 9:58 AM30/07/11 9:58 AM

	Sol01-9780123747501
	Sol02-9780123747501
	Sol03-9780123747501
	Sol04-9780123747501
	Sol05-9780123747501
	Sol06-9780123747501
	Sol07-9780123747501

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

